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PREFACE TO THE FOURTH EDITION

This textbook is an outgrowth of Timoshenko’s two-volume Strength of

Materials, first published in 1930. Whereas the two-\'olume edition presents

both elementary and advanced topics, the present volume is considerably

abridged and is designed primarily for undergraduate courses in elementary

strength of materials in American colleges and engineering schools

This fourth edition of Elements of Strength of Materials has beeiiVom-

pletely rewritten but in so doing an attempt has been made to retain the

same general approacli to the subje(*t that characterizes the original work.

This consists primarily in proceeding gradually from the simplest cases to

the m(?re complex ones and relying on physical and geometrical considera-

|,ions of deformation to estaV>bsh the patterns of stress distribution under

various types of loading. This, of course, characterizes the ‘’strength of

materials approach” as contrasted witli that of the ‘‘theory of elasticity
”

Such an approach may seem old-fashioned to .some, but the authors firmly

believe that, for the beginner, it repre^sents a sounder pedagogy. We must

ail learn to walk before we attempt to run.

In this edition, the subject matter, with some rearrangement and

additions, remain.s essentially the same as in previous editions. Significant

changes and new features may be listed as follows: In the first ehapter,

the ideas of stress and strain within the elastic range of behavior are treated

thoroughly before introducing the complica lions associated with nonlinear

stress strain behavior. The second chapter begins with a discussion of the

stress conditions on an oblique section of a bar in tension in order that the

complete stress-strain diagram with proportional limit, yield point, ultimate

strength, etc,, may be better appreciated. This chapter also contains a new

section on Plastic Analysis or Limit Dcusign. ,

Throughout the book, the material on Strain Energy, pre^'iously confined

to one chapter at the end, has been distributed among several chapters in

order to better integrate this material with the .st of the subject. Thus
Chapter II contains one section on strain energy of tension or compression;

Chapter IV, one on strain energy of torsion; and Chapter VIII, one on

strain energy of bending. This permits discussion of stress under dynamic

loads in parallel with that under static loads and gives more life and variety

to the* problems. Anyone preferring to postpone omit these sections on
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VI PREFACE

strain energy can easily do so without loss of continuity in the rest of the

material.

Chapter III beginvS with a discussion of stresses in thin-walled pressure

vessels which serves to introduce the problem of biaxial stress. Analysis of

biaxial stress is then developed in detail and Mohr’s circle is introduced.

This leads logically to a discussion of pure shear which is essential to a

proper treatment of torsion as taken up in Chapter IV. To round out the

chapter on biaxial stress, the final section deals with the problem of riveted

and welded joints for pressure vessels. This material is greatly abridged in

the present edition, since it is felt to belong more properly to a design course.

In Chapters V and VI, the question of bending stresses and shearing

stresses in beams is taken up. This material, although somewhat rear-

ranged, is not greatly different from that in the third edition. Chapter

VII treats the problem of plane stress and the notion of principal stresses.

Applications to principal stresses in beams and vstresses due to combined

bending and torsion are fully treated. The chapter ends with sections on

the analysis of plane strain and the use of strain rosettes.

Chapter VIII is devoted to methods of calculating deflections of beams.

These include the differential equation of the elastic line, the moment-area

theorems, and the method of superposition. Statically indeterminate

beams are discussed in Chapter IX. Since the concept of strain energy

has been developed in earlier chapters, it is natural at this point to discuss

Castigliano’s theorem and its application to statically indeterminate

problems. This chapter ends with a new section on limit analysis of

statically indeterminate beams, using the concept of the plastic hinge.

Chapter X, dealing with the theory of columns, has been rewTitten so as to

emphasize the rational approach and minimize the attention given'' to

empirical column formulas. The text proper ends with a chapter on the

mechanical properties of materials. This treatment has been greatly

expanded from that in the third edition and many important new develop-

ments are included. It is hoped that the inclusion of such material in an

undergraduate textbook will give the student a better appreciation of the

importance of the experimental side of the subject of Strength of Materials.

Notations and sign conventions used in the third edition hav*^ been

changed in a number of instances in order to bring them into closer agree-

ment with accepted usage at the present time. This is most notable in the

use of (j and r for normal and shearing stress. Most of the problems are new,

at least to the extent of given numerical data, and answers are given to all

problems.

S. Timoshenko
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NOTATIONS
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force
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gravitational acceleration constant
height; depth of a beam
horsepower
moment of inertia of area
radius of gyration
polar moment of inertia of area
stress concentration factor

symbol for \F/EI; spring constant
;
factoi

length

betiding moment
normal force

factor c»f safety; r.p.ni
;
number

force; load

pressure per unit area; pitch
force; statical moment of area
load per unit length
reaction, radius
radius; radius of gyration
stress resultant
arc length

torque; temperature
thickness

strain energy
strain energy pier unit volume
shearing force; volume
velocity

weight
;
total load
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NOTATIONS

load per unit length : weight per unit volume
forces

coordinates

section modulus

temperature coefficient of expansion ; angle

angle

shearing strain
;
weight density

deflection; total elongation

tensile or compressive strain

hlope of elastic line: angle of twist per unit length

Poisson^s ratio

radius of curvature; radial c<jordinate

normal stress

shearing stress

angle of twist; angular coordinate

angular velocity



CHAPTER I

TENSION, COMPRESSION, AND SHEAR: I

1.1 Introduction

Various struruires and machines— bridges, cranes, airplanes, ships,

etc. — will be found, upon examination, to consist of numerous parns or

members connected together in such a veay as to perform a us('ful function

and to withstand externally applied loads. C'onsider, for example, the

simple press shown in Fig. 1.1a. The function of this press is to tc^.st speci-

mens of various materials in compression. To accomplish this, the speci-

men is placed on the floor of the base A and the end of the screw is forced

down against it by turning the handwheel at the top. This action subjects

the specimen as well as the lower portion of the screw to axial compresmm
(Fig. l.ld) and the side members N to axial tension (Fig. 1.1b). It will be

Fto. 1.1



2 TENSION, COMPRESSION. AND SHEAR: I

observed also that the crosshead M is subjected to bending (Fig. 1.1c) and

the upper part of the screw to twist or torsion (Fig. Lie). Detailed study of

these four basic types of loading of structural members essentially con-

stitutes the subject matter of Strength of Materials. In this and sub-

sequent chapters, they will be taken up in order.

Analysis and design of any structure or machine like the press in Fig. 1.1

involve two major questions: (a) Is the ".structure strong enough to with-

stand the loads applied to it and (b) is it stiff enough to avoid excessive

deformations and deflections? In Statics, the members of a structure were

treated as rigid bodies; but actually all materials are deformable and this

property will henceforth be taken into account. Thus Strength of Materials

may be regarded as the statics of deformable or elastic bodies. For example,

it is clear that compression of the specimen in Fig. 1.1a can he increased

only by advancing the screw of the press downwards through the crosshead

M. This relative displacement between two parts of the machine is partly

accounted for by shortening of the sp)ecimen and the lower part of the screw

and partly by extension of the side bars N as well as some liending de-

flection of the crosshead M. Thus, the amount of compressive force on the

specimen that will correspond to one turn of the handwheel will depend

upon the relative stiffness of the various members of the machine.

Both the strength and stiffness of a structural member are functions of its

size and shape and also of certain physical properties of the material from

which it is made. These physical properties of materials are largely

detennined from experimental studies of their behavior in a testing ma-
chine. The study of Strength of Materials is aimed at predicting just how
these geometric and physical properties of a structure will influence its

behavior under service conditions. The applications of the subject are

broad in scop? and will be found in all branches of engineering. We begin

with a study of the simplest type of loading, namely, axial tension or com-

pression of a straight prismatic bar.

1,2 Internal Force; Stress

In Fig. 1.2, a prismatic bar AB is subjected to axial tension by Ihe

action of a vertical load P applied at B and acting along the axis AB of the

bar, the proper weight of which is neglected. This action on the bar

stretches it slightly and also tends to pull it apart, i.e., to produce rupture.

This tendency to rupture is resisted by internal forces within the bar, i.e.,

by actions and reactions between its various particles. To visualize these

internal forces, imagine that the bar is cut by a section mn perpendicular to

its axis and that the lov/er portion is isolated as a free body (Fig. 1.2b) . At

the lower end of this portion of the bar, the external force P is applied. On
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the upper end are the internal forces represent-
^

ing the actions of the particles of the upper part

of the bar on those of the lower part. These

forces are continuously distributed over the

cross-section mn. In dealing with such distri-

buted forces, the intensity of force, i.e., the force

per unit area, is of great importance. Visualiz-

ing the bar as made up of a bundle of longi-

tudinal fibers, each of which carries its fair

share of the load, it apf)ears reasonable to

assume, in this case, that the distribution of

forces over the cross-section will be uniform *

From the condition of equilibrium of the free

body (Fig. 1.2b), it is seen that the resultant of

this uniform distribution of internal forces must

lx* equal to the external load P. Thus, if A de-

notes the cross-se(!tional area of the bar and

(T, the force per unit area, we have S = aA
= P, from which

P
" = I'

This force per unit area is called the stress in the bar; the total tension

S — <rA is sometimes called the stress resultant. Force is usually measured

in pounds and area in square inches so that stress has the dimension of

pounds per square inch, denoted by ‘^psi."'

non-un^onn; but this effect is very localued and will be ij^ored for the present. For
further discussion see Art. 2.5, p. 46.



4 TENSION, COMPRESSION, AND SHEAR: I

In order that the applied load P in Fig. 1.2 will actually induce a uniform

stre.ss <T ov’^er each cross-sc^ction of the bar as assumed above, its line of

action must pass through the centroid of each cross-section, i.e., P must

act along the (‘entroidal axis of the bar. To prove this, consider an arbitrary

shape of (Toss-section as.shown in Fig. 1.3 and let dA be any element of area

therein. Then for the assumed uniform stress distribution, a is constant

over the cross-section and the element of force acting on dA is cdA, normal

to the plane of the section. The resultant of these parallel forces is

N = fadA = afdA = aA
, (a)

also normal to the section.

The point of application of the stress resultant S can be found from the

theorem of moments: namely, the moment of the resultant about either of

the coordinate axes x or y must equal the algebraic sum of moments of the

elemental forces <jaA about the same axis. Thus, denoting by x and y the

coordinates of the point of application of the resultant, we have

(tAx = jx<rdA = aJxdA = (tAxc,1

aAy - jyadA = crjydA =

where Xc and yo are the coordinates of the centroid C of the cross-section.

From e(^s. (b), it is seen that x = Xc and y = ijc. Thus for a uniform stress

distribution, the stress resultant S acts through the eeniroid of the cross-

section. Furthermore, it can be seen from Fig. 1.2b that the force S must
be (‘ollinear with the applied force P. Therefore, P can produce a uniform

stress distribution over each cross-section only if it acts through their

centroids.*

All of the foregoing discussion applies also to the case of a short post or

stnd subje(‘ted to a compressive load P as shown in Fig. 1,4. Here also the

*A tensile load P that does not act along the centroidal axis of a bar will produce bend-

ing as well as tension of the bar. This case is discussed in Art. 10.1, p. 264.
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load P must act along the centroidal axis of the post to produce the uniform

compressive stress cr indicated in Fig. 1.4b. In the case of compression

members, this condition is sometimes difficult to fulfill, so that the com-

pression of long slender struts or columns requires special consideration

which will be taken up later in Chapter X.

Direct Shear, Referring again to Fig. 1.2, let us consider now" in some

detail the connection between the tension member AH and the ceiling at its

upper end. Clearly, in the interests of good design, this connection should

be strong enough to develop the full load-carrying capacity of the bar AB
itself. An enlarged detail of this connection is shown in Fig. 1.5a, where it is

seen that the load P on the tension member must be transmitted to the fork

by the horizontal pin connecting the two parts. A free-body diagram of this

pin is shown in Fig. 1.5b and it is seen that the pm is primarily in a condition

of shear which tends to cut it across the sections mn* Assume now" that the

internal shearing forces resisting this tendency are uniformly distributed

over each of the cross-sections mn. Then denoting by Tqv the shear force

per unit area, i.e., the average shear stress, we see that equilibrium conditions

of the middle portion of the pin require that TrvAh = P, from which

r«v = £, (1.2)

where A, is the total area in shear— in this ease, twice the cross-sectional

area A of the pin.

Since shearing conditions are never as simple as assumed above, it must

be realized that the average shear stress as calculated from eq. (1.2) may be

o»ly a rough approximation to the actual stresses that exist in the material.

Nevertheless, lacking any more exact knowledge of the true stress distribu-

tion, the designer is often forced to use this simple concept of average shear

stress as a basis for design.

In dealing with various kinds of machines and structures, the engineer

frequently encounters members subjected to simple direct tension, com-

pression, or shear as discussed above. The general problem of design of

such members consists in proportioning them so that they can safely and

economically withstand the loads that the}’' have to carry. As a basis of

doing this, many materials have been tested in the laboratory to establish

their strength or resistance to rupture under various types of loading and

thereby establish allowable or safe working siressest to be used in design.

*There is also some bending of the pin, but if the clearances are small this will be of

secondary importance. Only the shearing action will be considered in the present dis-

cussion.

tThe establishment of working stresses is a very complex question which will not be

discuss^ in any detail at this point. For furtlier discussion, see Art. 2.2, p. 32.
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An allowable working stress is usually taken as 1/n times the value of the

stress at which failure of the test specimen took place. Thus in using such

a AVorking stress, the designer has a so-called factor of safety n to allow for

overloading or other unforeseen adverse effects. Losing these somewhat

arbitrarily assigned working stresses together with eqs. (1.1) and (1.2), the

designer can determine the proper dimensions for the various members of a

machine or structure subjecled to the action of given loads. Or, if the

structure has already been biuii, he can establish safe values for the allow-

able loads in a similar maimer.

KXAMCLf: 1 A \'(‘rtical load /" = 5{X)0 U> isMjpported by two inclined stctd wires

and lU' as shown in I'^ig. LG Determine the required (Toss-sectional area 1 of

Fig, 1.6

each wire if the allowable working stress in tcuision is o-„, - 10,0(X) psi and the

angle 6 = 30®.

solution, a free-body diagram of the ring C is shown in Fig. 1.6a, and tjie cor-

responding triangle of forces in Fig. 1.6b. This triangle being equilatfTal, wA‘ have

5 = P = 5000 lb. Then from eq. (LI), the necessary cross-sectional area is

A -
S

O’ «;

5000

10,000
0.5 sq in.

EXAMPLE 2. The piston of a deep-well pump is operated by a vertical prismatic

steel rod of length I
- 320 ft attached to a crankat its upperend as ahowm in Fig. 1.7.

Determim‘ the extreme values of tinisile and compressive stress a in the rod if the

resistance on the piston during the dowmstroke is 200 lb and during the upstroke is
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2000 lb. The cross-sectional area of the rod is A *= 0.338 sq in. and its density is

490 Ib/cu ft.

SOLUTION. The weight of the rod is

wlA =^ X 320(12) X 0.338 « 368 lb.

The maximum tensile stress will occur at the top of the rod during the upstroke.

Under these conditions, the total tension is

Sm.K = 368 -h 2000 = 2368 lb.

The corresponding maximum tensile stress is

S 2368 .

The greatest compressive stress will occur at the lower end of the rod during the

downstroke. For these conditions S = 200 lb compression and

5 ^ 200

A “ 0.338
592 psi.

EXAMPLE 3. A tension rod made up of two parts as shown in Fig. 1.8 is designed to

carry a total load P = 20,000 lb. What is the proper diameter d for the connecting

bolt if the allowable working stress in shear is ^ 10,000 psi?

SOLUTION. Assume that the bolt fits snugly in the holes through the prongs of the

fork and that the clearances are small so that bending action on the bolt will be

minimized. Then the bolt is esseixtially in a condition of direct shear across the

sections aa and eq. fl.2) may be used. This gives

A
F ^ 20,000

Tw 10,(KX)
2 sq in.

Thus the required cross-sectional area A of the bolt is 1 sq in. and the corresponding

diameter d « 1.13 in.
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PROBLEMS

1* A short hollow cast-iron cylinder with a w’all 'thickness of 1 in. is to carry a

compressive load P = 150 kips (1 kip = 1000 lb). Compute the required outside

diameter do if the working stress in compression is Cre = 12,000 psi. Am. do =
4.98 in.

2. Solve the preceding problem if the wall thickness is to be one-tenth of the

outside diameter do. Ans. do = 6.65 in.

3. A steel wire hangs vertically under its owm weight. What is the greatest

length it can have if the allowable tensile stress is tr* = 30,000 psi? The specific

weight of steel is 490 Ib/cu ft. /ln,9. I = 8820 ft.

4. The upper portion of the tension rod in Fig. A is a l-in.-square aluminum bar

for which <Ty, = 8000 psi. The lower portion is a square steel bar for W'hich (Tu. =
20,000 psi. Calculate the safe load F based on the aluminum and the proper cross-

sectional dimension a for the steel bar to develop the full strength of the as8embl3^
Ans. a ^ 0.4 in.

Fig. \

5. If th(‘ aWow^able w^orking stress lor the pump rod in f'ig. 1.7 is reduced to

<Tu, = 6000 psi, w'hat is the required cross-sectional area .4*^ Use all other data Us
given in Example 2. Ans. A == 0,407 sq in.

6. Three pieces of wood having in. X IJ-in.-square sections are glued together

as shown in Fig. B. If the assembly carries a total load P * 4000 lb as showm, what
IS the average shearing stress in the glued joints? Ans. r^v = 444 psi,

‘*7. For the wood truss shown in Fig. C, allowable stresses in direct compression

and shear are - 400 psi and “ 125 psi, respectively. Compute the proper

dimensions a and h for the notched joints at the ends of the horizontal memlier.

Atw. a « 4 in.; 5 = 1.25 in.

8. In Fig. D a lever is attached to a spindle by means of a i-in.-square key 1 in.

long. If the average shear stress in the key is not to exceed 8000 psi, what is the safe

value of the' load P applied to the end of the lever? Ans. P ^ lb.

9. Two lengths of 2i-in .-diameter shafting are in line and are coupled together by a
sleeve that fits over one end of each shaft. To prevent relative rotation between the

tw^o portions of the shaft, f-in.-diameter pins pass through the sleeve and shafting

at right angles to the axis of the shaft. These pins are purposely made of a weak
material so ac to prevent overloading of the machine. If the maximum torque to be
transmitted bj the .ihaft is 10,000 in.-ib, what should be the ultimate shearing

strength of the rnaU^rial chosen for the pins? Ans, 16,300 psi.

lOr The hub of a pulley may be fastened to a l-in.-diameter sikaft either by a
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square key or by a pm as shown m Fig. F. (\mipuU‘ tfu* iorque tliat (‘ac*h connection

can safely transmit if the a\^orage shearing stn^ss in the k('v or pin is not to exceed

10,000 psi. Ans. Tk =- 1250 in.-Ih, for key; = 1105 in -lb, fs?' pm

1.3 Elasticity; Strain

Let LIS consider again the ease of a prismatn' bar in

simple tension as shown in Fig, 1.9. As the tensile load P
is gradually increased, the bar will be. oh.served to stndch

slightly so that for each value of P there will be a (•.in-

responding small elongation 6 of the bar as shoAMi

Subsequently, if the load is gradually diminished to ^eru.

the elongation 5 will either eomplel('ly or partially dis-

appear, i.e., the bar tends to ^eassume its initial length /.

This property of a material to return partially or com-
pletely to its initial shape after unloading is called

elasticity. If the bar completely recovers its initial length

,

the material is said to be perfectly elastic; if not, it is .said

U\be only partially elastic. Experiments show t hat many
structural materials like steel, aluminum, wood, and even

concrete may he considered as perfectly elastic within

limits, i.e., if not excessively loaded. For the present dis-

cussion. we confine our attention to this clastic behavior of a materia)

Referring to Fig. 1.9, it may be assumed that, under tension, all longitu-

dinal fibers of the bar are stretched uniformly. Thus, we define the elonga-

tion per unit length of the bar by

which is called the tensile strain or simply the. strain. Similarly, for a bar

in axial compression, the quantity c will define the contraction per unit

length of the bar, or the compressive strain. Tensile strain will be considered

positive; compressive strain, negative. It should also be noted that strain is a

dimensionless quantity, l>eing a length divided by a length.

Hooke's Law, Experiment with prismatic bars of various materials in

tension have showm that, within the range of elastic behavior of the
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material, the elongation 6 is proportional to both the tensile force P and the

length I of the bar. It is also observed to be inversely proportional to the

cross-sectional area A of the bar. Expressed algebraically, 6 Pl/A^ or

= 1 iL
E ' A ^ AE' (1.4)

where E is a constant for any given material and is called the modulus of

elasticity of the material in tension. The relationship expressed by eq. (1.4)

is known as Hookers law^ after Robert Hooke who first established it by

experiment in 1678.

Using the notations

P 6

from eqs. (1.1) and (1.3), Hooke’s law can also be written in the form

e 7; or <7 = Ee.
E 0.5)

Expressed in words, this leads to the familiar concise statement of Hooke’s

law: Stress is proportional to strain. The modulus of elasticity E is seen to

represent the factor of proportionality between stress and strain and

may be directly defined by

? _ stress

c strain
(a)

Since the strain < is dimensionless, it may be concluded that the modulus of

elasticity E has the dimension of stress, i.e., pounds per square inch, psi.

From its definition (a), the modulus of elasticity E is seen to represent

that stress a which would produce a tensile strain c = 1 ;
in other wor^s,

that tensile stress under which a bar would be stretched to twice its original

length if the material could remain perfectly elastic throughout such

excessive strain. As this observation would lead us to expect, the modulus
of elasticity is a very large quantity for most materials. In the case of steel,

for example, a value E = 30(10)® psi is usu-

ally used,* ^
If we plot tensile stress n against rain e

from eq. (1.5), we obtain the straight line

0*4 in Fig. 1.10. This plot represents the

so-called stress-strain diagram for a material

in simple tension within the range of its

elastic behavior. The modulus of elasticity

E is seen to represent the slope of the

stress-strain line OA,

'“For value.j of F for other commonly used structural materials, see Tables I, II, III,

Appendix A, p. 341.



ELASTICITY; STRAIN 11

All of the above discussion applies also to the case of axial compression

of a bar. For most materials, the modulus of elasticity in compression is

found to have the same value as for tension. In calculation, tensile stress

and strain are to be considered as positive: compressive stress and strain,

as negative.

Poisson's Ratio. Referring again lo the tension member uj Fig. 1.9,

experiments show further that its axial ek>ngatio!i isalwa 3’'s accompanied

by a lateral contraction and that the ratio

un it lateral contraction

^ unit axial elongation

is constant for a given material within its range ol elastic behavior. This

constant y. is called Pu)sson's raho^ after the French mai hcinatician who
predicted its existenee and value, using the molecular theory of structure

of the material. For so-called isotropic materials whifdi have the same

properties in all directions, I \»isson concluded that m - Careful measure-

ments on sti’uctural metals in ten.sic.n usually confirm this v:ilue quite

closely. For vtriK'tural steel, experiments indicate that approximately

fi
^ o.:h

Knowing (he modulus of elasticity E arid Poisson's ratio /i for a given ma-
terial, the change in dimensions and voiurrte of a. prismatic bar in tension can

easily be calcula1(‘d Before deformation, the volume of the bar is F = AL
After deformation, the new length q — /(I + t) and the new cross-sectional

area Ai = A(i “ Thus the new smlume is = Ail\ — Al{l + c)

(1 — fiey or, since a is a small r|uanlity compared with unity, Fi — AZ

(1 + e — 2/icb ITus the change in \oiume is AV" -- - F == Ah
(I -- 2ii) and the anil vohimr change beeome.s

AF
Y

Ah(\ - 2m) ^ ~ 2m). (1.6)

Since it is unlikely that any material would diminish in volume under

tension, we may expect that m will alw'ays be less than i. For such a

material as rubber, m approaches the above limit and the volume of rubber

rcmakis practically constant during extension. Other materials like con-

crete and cork have smaller values of m and increase slightly in volume

when subjected to tension The value of m for concrete can be taken as 0,1,

while for cork, m = 0.

The above discussion of axial tension can be applied also to the cc.3e of

axial compression of a prismatic bar. Jn such case, the longitudinal con-

traction of the bar will be accompanied by lateral expansion and for cal-

culating this expansion, the same value for m as in the case of tension can

be used.
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EXAMPLE 1. Referring to Fig. 1.1 calculate the

total elongation 6 of a prismatic bar of length I and
cross-sectional area A which hangs vertically under

its own weight.

SOLUTION. Due to the uniformly distributed weight

of the bar, the total tension at the cross-section mn
will

.S, = yAx, (b)

where y is the weight per unit volume of the material.

As a result of this tension, an element of length dx sit-

uated just above the cross-section mn will elongate by
the small amount

Fio. 1.11

obtained from e(i. (1.4) by replacing P by and /

by dx. Summing up all such elemental elongations

along the full length of the bar givt's

Substituting S, = yAx from eq. (b), this becomes

rs.d2

‘•J.Aif
(b), this becor

It may be noted that since the total weight of the bar is W = yAl, eq. (e) can also be

expressed in the form

C'omparing the result with eq, (1.4), we see that in this case of uniformly varying

tension, the total elongation 5 is just half what it would be if the tension were ecpial

to W throughout the length of the bar.

EXAMPLE 2. A homogeneous slender prismatic bar of total length 21 rotates with

constant angular velocity w in a horizontal plane about a fixed axis through its mid-

point as shown in Fig, 1.12. The cross-^sectional area of the bar is A and its weight
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per unit volume is 7. Find the maximum stress o and the total elongation h of either

half of the bar due to centrifugal tension.

SOLUTION. Consider an element of the bar of length (if at the distance f from the

axis of rotation. The centrifugal force on this element due to its motion in a circular

path of radius f is

dF - 7^
9

where yAd^/g is the mass of the element and is its radial acceleration. This force

acts radially outwards along the axis of the bar as shown. The total tension 5, at

any cross-section mn defined by the distance x from the axis of rotation is the sum of

all these centrifugal forces between f = x and f = /. Thus

It /)» i\-to*^ = -T— (/- - a:*),

iff

(f)

This ta'nsile force has its maximum value at the mid-point of the bar (i = 0) where

mn* •“
yAf^H'^

The corresponding maximum stress is

_ 7^
/I 2g

It will be noted that this maximum stress increases as the square of both the angular

velocity co and the length /, so that a long bar rotating at high speed will be very
severely stressed.

The total elongation of either half of the bar will be

'S.dar

AE
'

Substituting the value of from eq. (f) and integrating

b =
f^yAiii^dx

0 ~2gAE
(F - x^)

yu}H^
(g)

This may also be written in the form

ig AE 3<7 AE (s')

where 11" = yAlia the weight of one half of the bar. This is the same elongation that

would take place in a massless string of length I having a mass particle of weight W/S
at its outer end.

PROBLEMS

1. What tensile force P will be required to produce a unit strain « = 0.0008 in a

steel rod that has a circular cross-section of diameter d ~ § in., if S = 30(10)* psi?

Ans. P = 4710 lb.
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2. An aluminum bar 6 ft long has a l-in.-square cross-section over 2 ft of its length

and a l-in.-diameter circular cross-section over the other 4 ft. How much will the

bar elongate under a tensile load P = 3500 lb, if ^ = 10.5(10)® psi? Ans. 5 =
0.0284 in.

3. A steel bar 10 ft long has a circular cross-section of diameter dj = 1 in. over

half its length and diameter ^2 = i in. over the other half, (a) How much will the

bar elongate under a tensile load P = 8000 lb? (b) If the same volume of material is

rolled into a bar 10 ft long and of uniform diameter d, what will be the total elonga-

tion 5 of this bar under the same tension P ~ 8000 lb? Ans. (a) S = 0.102 in.;

(b) d = 0.0652 in.

^ 4. A steel bar having a J in. X J in. cross-section is loaded as shown in Fig. A.

Neglecting localized irregularities in stress distribution in the vicinity of the points

^ 6 '
->

1
^ 4'

4^ 2
'"

Ftq. A

of application of the loads, compute the net increase in the length of the bar. .4 ns.

8 = 0.0370 in.

A twisU'd wire cable 1200 ft long is fastened at its upper end and hangs vertical-

ly in a deep shaft. Assuming E — 15(10)® psi, and y = 4W lb per cu ft, calculate the

total elongation of the cable under the influon(*e of its own weight. An$. 5 = 1 .96 in.

6. A uniformly tapering sU*el rod 10 ft long has diamet^T di = 2 in. at its upper

end and diameter d ^ = 1 in. at its longer end. This rod hangs vertically and carries a

Umsile load P = 10,000 lb at the lower end. Calculate the total elongation 5 of th(‘

rod, neglecting its own weight. Am. 3 = 0.0255 in.

7. Referring to Example 2, p, 6, assume that the vertical rod of the mine pump
is made of steel (E = 30(10)® psi) and that all other data are as given in the exami)l(‘.

With these data, find the propc^r radius r of the crank at the upper end in order to

attain an 8-in. stroke of the piston at the lower end. Am. r = 4.42 in.
*

8. For the simple structure shown in Fig. B, member BC is a steel wire having

diameter d = ^ in. and member .IP is a wood strut of l-m.-square cross-section.

Calculate thij horizontal and vortical components of the displacement of point B due

a



ELASTICITY; STRAIN 15

to a vortical load P = 400 lb acting a? shown. For stool, = 30(10)® psi; for

wood, /i’u. - 1.5(10)® psi. ,lns. 5/. = 0.029 in.; 5, = 0.045 in.

9. If the rotating stool bar in Fig. ] .12 has a total length 21 — 10 ft, what angular

speed of rotation may it have with.out exceeding a maximum allowable ttaisilo stress

of 40,000 psi? Ans. 1660 r.p.m.

10. The vertical stec*] bar in Fig. C has cros^-st'otional area .1 -i
over th(’ length 1 2 ,

cross-sectional area .li over the length /i, and modulus of elasticity E. Find the

ratio P1/P2 such that the vertical displacement of point .1 will In* Z('ro. -Uw.

Pi 2

11 . In testing a concrete cylinder in compression, the original diarnetiT d = 0 in.

was increased by 0.0005 in. and the original hmgth / = 12 in. was decreased by 0 01

1

in. under a total compr(*ssive load P = 52,000 lb. Compub' the values of tin*

modulus of elasticity E and Poi.^^aon’s ratio ju. . Uis. E ^ 2(10)® psi, y. = 1/11.

12. A prismatic bar of cross-sectional area .1 and lengtli /. fastened at its upper
end, bangs vertically under the action of its own weight and a tensih' force P at its

lower end. ( -aiculate the increase m volume of the bar if E, y, and 7 are given, Ans.

1.4 Statically Indeterminate Problems in Tension and Com-
pression

Consider the simple structure made up of three tension rnemliers, each of

cross-sectional area A and modulus of elasticity arranged as show'ij in

Fig. 1.13a and subjected to a vertical load P Sit A. Under the action of this

load^each bar will be subjected to some tension and a free-body diagram of

the connecting pin A will be as shown in Fig. 1.18b, where Y denotes the

tensile force in each inclined bar (equal because of symnietry) and X, the

Fm. 1.13
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tensile force in the vertical bar. Then from equilibrium considerations of

this pin, we must have

X -f 2Fcosa = P. (a)

It will be seen at once that w^hile this equation of statics dehnes a

relationship between the tensile forces X and Y, it is insufficient to deter-

mine their values uniquely. For this reason, the structure is said to be

statically indeterminate. Looked at in another way, it will be observed that

any tw^o of the three bars are sufficient to constrain the pin A in the vertical

plane of the figure and therefore a third bar is said to be redundant. In

general, any structure which contains more constraints than are necessary

for geometric rigidity of the structure, i.e., one which contains redundant

constraints, will prove to be statically indeterminate. In fact, if the bars of

the structure in Fig. 1.13a were absolutely rigid and undeforinable, as

assumed in statics, there would be no way to ascertain how the load P was*

divided among the three bars. However, the bars are actually elastic and

stretch slightly under tension. Furthermore, since they are connected

together by the pin A, it is evident that the amounts they stretch must be

related in some way by the geometry of the structure. This is shown in

Fig. 1.13c, Denoting by d t-he elongation of the vertical bar and by 5i the

elongation of each inclined bar and keeping in mind that these elongations

are extremely small compared with the dimensions of the structure, it will

be seen from Fig. 1.13c that

= 5 cos a. (b)

This equation of geometry or consiste?U deformation is the key to the problem.

Assuming that the tensions in the bars do not exceed their elastic iimiU and

using Hooke's law, we have

XI
, , _ Yl, Yl

0 — ~7^ and 5i = —
~T~r

’

AE AE AEco^^a

where U = i/cos a is the length of each inclined bar. Substitution of these

values into eq. (b) gives

Yl XI
Tin == Tn cos a,AE cos a AE

from which F = X cos^ a. (c)

Substitution of this value of F into eq. ta) gives

X + 2X cos^ a = P,

from w'hich

^ «“ and F ^ ,1+2 cos® a 1+2 cos® a
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Then the total vertical deflection of point A becomes

s = ^ (—L\.
AE \1 +2 cos^ a)

This example illustrates one case of a statically indeterminate system in-

volving axially loaded members. Others will be shown in the examples

which follow. In all cases of systems involving redundant elements,

equations of statics will be insufficient to determine all of the unknown!

forces and must be supplemented by equations of consistent deformation

based on the geometry of the system.

KXAMPLK 1. A hollow st(^el cylinder of length / = 12 in., inside diamefcT d = 6 in.,

and uniform wall thickness < = J in. is filled with concrete and compressed l>etween

rigid parallel plat<‘s by a load F = 100,000 lb as shown in Fig. 1 .14a. Calculate the

compressive stress in each material and the total shortening of the cylinder if

F, = 30(10)® psi for tlie steel and — 2(10)® psi for the concrete. Assume that

both materials obey Hooke’s law .

SOLUTION. A free-body diagram for the upper portion of the cylinder is shown in

Fig. 1.14b and from statics it follows that

OsA, -h (TcAc = P. (d)

Also since both materials must short(*n tlic saTue amount, because of the rigid (md
]jlates, and are of the same height I, their umt I’ompn'ssiv^e strains must be equal,
so that

Es
(e)

Phis shows that the two materials arc stressed in the ratio of their moduli of elastic-

ity, For the given vaiu(!s <if these moduli, E»/Ec = 15, so that a, = ISCf, and
eq. (d) gives

\hP

1 5. U Ac 15.L-f A,
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Using the given numerical data, A, = 2.41 in.^ and Ac = 28.3 in.^ so that

(Tc = 1560 psi and cr, = 23,400 psi. The total shortening of the cylinder is 5 = f/ =
(ac/Ec)l = 0.000775 X 12 = 0.00936 in.

EXAMPLE 2. A rigid bar AB is hinged at A and supported in a horizontal position

by two identical vertical sh^el wires as shown in Fig. 1.15a. Find the tensile forces

iSi and »So induced in these wires by a vertical load P applied at B as showm.

soLUi'ioN. (‘onsidenng the (‘quiiibrium of the })ar AB, the proper weigiit of which

is neglech^d, and taking moments of all forces with respect to the hinge J ,
w’e have

+ - PL (f)

'Mso, since u\B remains straight and simply rotab's slightly around point A, the

elongations and 52 of the w'ires must be in th(‘ ratio a/b, i.e.,

Then from Hooke’s law, Si/S>: ~ a/b and cq. (f) gives

Pal Pbl

a» + “
a= 4- 6"'

EXAMPLE 3. A cold-rolled steel bolt of length / = 12 in. passes through a hard-

drawm copper tube of the same length, as shown in Fig. 1 .16a, and the nut at the left

end is turned up just snug at room temperature T = 70° F. Subsequently the nut is

tightened up n ~ J turn and the entire assembly is raised to a temperature T =*

140° F. Wliat stresses will exist in the bolt and the tube under these conditions?

The cross-sectional area of the steel bolt is A* « J sq in., its modulus of elasticity

F, - 30(10)" psi, the coefficient of thermal expansion is a, 6.5(10)"" in./in./P^

and the thread pitch p ~ | in. For the copper tube, Ac = i sq in., Ec = 16(10)" psi,

and a. = 9.3(10)-" in./ in./F°.

SOLUTION. Consider that portion of the assembly to the right of a section vm as a

free body (Fig 1.16b). I'hen from static equilibrium it is seen that the compressive

force Sc in the copper tube must balance the tensile force in the steel bolt, i.e.,

= Sc. (h)



STATICALLY INDETERMINATE PROBLEMS 19

Furthermore, since the final length of the bolt and the tube must be the same, it

follows that the shortening of the tube plus the extension of the bolt must be equal to

the thread displacement of the nut along the bolt. Expressed algebraically,

Sg + 6c « pti (i)

wherein the total extension of the steel bolt is

and the total shortening of the copper tube is

Or =
Sri

ArEr
XrlAT

AT being the net increase in Uunperature. Substituting these expressions for 5, and

6r into eq. fi) and noting from (vp ph) that S, ~ Sc = S. we obtain

pn

I

For the gjven nurnericjil data this gi\c<

-- N 18.t)701b

The corresponding stresse-^ are - d7,340 psi, U,‘rision and (Tc = 24,900 psi,

(‘ornpression.

Fig. 1.16 Fio. A

PROBLEMS

t. The bottom chord member of a bridge consists of three steel eye-bars placed

side by side as shown in Fig. A. Each bar m.a^' be assumed to have a uniform cros-s-

section, 4 in. X I in. throughout its "‘cf^-nter to center’^ length of 16 ft. The total ten-

sion in the compositci member is to be 200,000 lb. If the middle bar is accidentally

0.03 in. shorter than the other two Ixdore assembly, what will be the final unit

tensile ^ress in tliLs bar? Am, a — 19,800 psi.



20 TENSION, COMPRESSION, AND SHEAR: I

£ A concrete pedestal 8 in. high and having a 4-in. X 4-in.

square cross-section is reinforced by four J-in.-square steel

bars as shown in Fig. B. Calculate the safe value of the

compressive load P if the allowable working stresses for steel

and concrete are <t, = 20,000 psi and Cc ®= 1,000 psi. Moduli

of elasticity for steel and concrete are =* 30(10)* psi and

Ec = 3(10)* psi, respectively. Aub, P * 25,0001b.

Prestressed concrete beams are made in the following

manner: Steel wires are stretched between rigid end plates to

a tensile stress ctq as shown in Fig. Ci. Concrete is then

poured around them to form the beam as shown in Fig. Cj.

After the concrete sets, the external forces Q are removed and
the beam is left in a prestressed condition. If the moduli of

elasticity of steel and concrete arc in the ratio 12:1 and their

cross-sectional areas are in the ratio 1 :15, what are the final

residual stresses in the two materials? Ans. = 5<ro/9; <Tc

Fig. B = — <ro/27.

4. A trussed wood beam of length 2^ = 10 ft consists of a

4-in. X 4-in. square timber and two steel rods each of diameter d = J in. as shown

in Fig. D. The angle 2ot - 20®, E^ = 1.2(10)* psi, and E. = 30(10)* psi. If the

Fig. C Fig. D

double-acting turnbuckles in the steel rods have 10 threads per inch, how many
turns should be given to each turnbuckle after they are snug in order to prestress the

wood to 3(f00 pai in compression? Neglect deformation of struts. Ans. 11.6 turns.

Fig. E Fig. F Fig. G Fig. H
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.1 A vertical prismatic bar is fastened at its upper end and supported at its lower

end by an unyielding floor as shown in Fig. E. Determine the reaction R exerted by
the floor on the lower end of the bar if external loads Pi and P 2 are applied at inter-

mediate points as shown. The following numerical data are given: Pi = 3000 lb,

P 2^ 6000 lb, a = 4 in., 6 = 8 in., c = 12 in. Ans. R = 3500 lb.

6; A square post is made up of two pieces, one aluminum and one steel, side by
side as shown in Fig. F. If P, = 30(10)® psi and Ea = 10(10)® psi, find the proper

eccentricity e of the applied compressive load P so that each material will be under
uniform compressive stress. Ans. 6=- 1.00 in.

A rigid bar AB that is 6 ft long is suspended in a horizontal position by two
vertical wires attached to its ends. The wire at the left end A is 6 ft long, made of

copper [Ec = 15(10)® psi], and has a cross-sectional area A^ = 0.12 sq in. The wire

at the right end P is 8 ft long, made of steel [E, = 30(10)® psi] and has a cross-

sectional area A, = 0.08 sq in. At what distance x from the left end A of the bar

.IP should a vertical load P be applied to produce equal vertical deflections of A
and P? Neglect the weight of the bar AB. Ans. x = 3.00 ft.

8. A steel bar 5 ft long has a cross-sectional area of 2 sq in. for 2 ft of its length and
3 sq in. for 3 ft of its length. At room temperature, the bar fits exactly between un-

yielding walls at its two ends. If P = 30(10)® psi and the coefficient of thermal

expansion is a = 0.0000065 in./in./F®, what compressive force will be induced in

the bar by a temperature rise of 50 F®? Assume no bending of the bar. Ans.

S = 24,400 lb.

9. A bronze sleeve is slipped over a steel bolt and held in place by a nut that is

turned just snug. Compute the temperature rise required to stress the bronze to

4000 psi compression. Use the following data: A, = 0.50 in.®, At * 0.75 in.®,

P, « 30(10)® psi, Et =* 12(10)® psi, a. =* 0.0000065 in./in./F®, « 0.0000100 in./

in./F®, Ans. T = 152 F®.

To, A vertical steel rod fastened at its upper end has cross-sectional area A 1 =
1.00 sq in. over the length l\ = 12 in. and A 2 = 0.50 sq in. over the length h = 18 in.

as shown in Fig. G. The rod is also supported at C by a loose-fitting steel sleeve

having cross-sectional area A 2 * 0.50 sq in. and length /a = 5 in. Calculate the

deflection ^6 of the lower end of the rod due to a load P = 10,000 lb, assuming that

the sleeve is just snug when P * 0. Ans. Bb = 0.0138 in.

11. For the system shown in Fig. 1.13, the two side members are steel wires i in.

in diameter and the middle member is an aluminum wire } in. in diameter. The
length I of this wire is 20 in. and the angle a = 30®. At room temperature T « 70® F
and with no external load P, the assembly is free from stresses. Calculate the stress

in each of the wires due to an external load P = 1000 lb and a rise in temperature to

200® F. Ans. = 29,400 psi, tension; <Ta * 7920 psi, tension.

12. The side members of the square frame shown in Fig. H are aluminum bars of

1 sq in., cross-section and the diagonal members are steel wires i in. in diameter. If

the assembly is free from stresses at room temperature T = 70® F, what tensile

forces will exist in the diagonal wires if the entire frame is increased in temperature

to P = 170® F? Use the following numerical data: E» * 30(10)® psi, Ea « 10(10)®

psi, a, « 70(10)“’ in./in./F®, and a„ = 128(10)”’ m./in./F®. Ans. S * 772 lb.

1.5 Thin Rings

Consider the case of a thin circular ring subjected to the action of

unifonlily distributed radial loading as shown in Fig. 1.17. If the cross-
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sectional area A of the ring is constant along the circumference and the

thickness t is small compared with the radius r, such loading will produce

uniform circumferential strcwss and strain in the ring and the problem can

be treated as one of simple tension or compression. The distributed load

may be due to either internal or external pressure or centrifugal forces in

loo, 1.17 Fjg. 1.18

;b(' rase of a rotating ring. In any case, its intensity q may be defined in

pounds per incli of circimifercncc of the 'mean center line of rrxdius r.

To examine the internal forces induced by such loading, consider *the

tMpiiIi])rimn of an cjoment of length fis = ni$ as shown in Fig. I.17b, where

aS' denotes the cinMiniferential tension or hoop tension and qrdO is the element

of exteriial radial load. I'^.quating the algebraic stun of projections of

Iliese forces in the radial direction and noting that sin (d6/2) — dd/2 gives

qr de - 2^ = 0.

from \vhich N = qr, (1.7)

If the disinhuted loading q is directed radially inwards, eq. (1.7) will give

the iniiform circuniferential compression in the ring.

Since the thickness i of the ring is assumed small compared with its

mean radius r, the hoop tension S can be taken as uniformly distributed*

over the cro.ss-seci ion .1 and the unit stress becomes

aS qr

.4

•For thick nngs, hcc Timoshenko, Strength of Materiah, Vol. 2, p. 205.

(1.8)
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Likewise, the circumferential strain, uniform around the circumference,

becomes

= <T

E
qr

IT (1.9)

It may be noted that, because the circumference and diameter of the ring

are in the constant ratio tt, the unit diametral extension will be the same as

the circumferential strain, i.e., cd = t.. This notion of diametral strain €d

will be useful in discussing problems of shrink Jits as will be shown in some

of the examples to follow.

The uniform radial loading shown in Fig. 1.17a can be produced by

rotating the ring about its geometric axis normal to lht‘ plane of the ring

with some constant angular velocity o) usually specified in radians per

.second (secO- Fnder such conditions, each element of the ring of mass dm
moves with constant speed in a circular path of radius r and has a normal

acceleration ~ coV, directed towards the center of the ring. The cor-

responding centrifugal force is toVdm directed radially outward For an

element of length ds ~ nid and weight w per unit length of circumference

the mass dm ~ 'W)d6 g. Such centrifugal forces on all elements of the ring

are seen to represent a uniform distribution of radial loading of intensity

w
u == -co-r-

g
(a)

Substituting this into eq. (1.7), the corresponding hoop tension S becomes

o = or = —
g

(b)

Likewise from eq. (1.8), the hoop stress is

cr

S
A

w
Ag

(")

where 7 = w/A is the weight per unit volume of the material from which

the ring is made. It will be noted that this hoop stress due to centrifugal

forces increases as the square of both the angular velocity w and the radius

r of the ring. Thus a ring of large radius that rotates at high speed can be

subjected to very high stresses,

EXAMPLE 1. A long steel water pipe having a mean diameter d ~ 24: in. and wall

thickness t
—

i in. carries an internal pressure p = 150 psi, Fig. 1.18. Calculate the

magnitude of the hoop stress in the pipe wail and.' the increase in its diameter.

SOLUTION. Consider a section of the pipe having a length of 1 in. as a ring, the

cross-sectional area of w^hich will be A = 1 in. X i in. = 0.125 in.^ Then the

internal pressure p represents the intensity ol load per unit length of circumference
of this ring and eq. (1.8) gives

pr 150 X 12
^ “ A “

0.125
14,400 psi.
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From eq. (1.9), the circumferential strain becomes

e
14,400

30(10)

«

4.8 (10)-^

Since this also represents the diametral strain, the increase in diameter is

Ad = 4.8(10)-^ X 24 = 0.0115 in.

EXAMPLE 2. A steel sleeve of small thickness t is to be shrunk onto a solid shaft of

diameter d as shown in Fig. 1.19. Neglecting deformation of the shaft, find the
proper initial inside diameter of the sleeve if the hoop stress induced in the sleeve by
the shrink fit is not to exceed a prescribed working stress <Tw

Fig. 1,19

SOLUTION. Using eq. (1.9), the allowable circumferential strain in the sleeve,

equal to its diametral strain, must not exceed the value

where Ad is the difference between the diameter d of the shaft and the initial inside

diametcT of the sleeve. From this expression

Taking, for example, (Tu- = 30,000 psi, E = 30(10)® psi, and d = 4 in., this gives

30,000
X 4 0.004 in.

Thus tlie initial inside diameter of the sleeve should be not less than 4.000 —
0.004 - 3.996 in.

EXAMPLE 3. At a temperature of 420® F, a brass hoop of 20 in. inside diameter
and ^ in. thick, fits snugly over a steel hoop of 20 in. outside diameter and 1 in, thick

as shown in Fig, 1.20. Both hoops are 1 in. wide in the direction normal to the plane
of the figure. Subsequently, the system cools down to a temperature of 70®F. Cal-
culate the radirj pressure q set up between the tw^o hoops and the hoop stress at in

the brass due to the shrink fit. The following data are given; E, = 30(10)® psi,

E, = 13(10)® psi, a, = 6.5(10)“® in./in./F®, = 10.4(10)“® in./in./F®.
*
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SOLUTION. Neglecting the small difiFerence in the mean radii of the two hoops, we
assume that each hoop has a mean radius r * 10 in. Then it may be concluded that

the circumferential strains due to combined cooling and stressing are approximately

equal for the two hoops. This permits us to write

from which

aiAT -
AhEb

a^T-f
9r

.

9
(ai, - ot,)AT A.E,

A.E, r

A,E,

Substitution of the given numerical data in this expression gives q 730 lb per in.

for the radial pressure between the two hoops. Then for the hoop stress in the brass,

we have

» -2! * 7300
” Ab * 0.50

14,000 psi.

PROBLEMS

1. At what rpin will a thin steel ring of mean diameter d « 6 ft reach its ulti-

mate strength (o-u == 76.000 psi) in hoop tension? Am. n = 2680 rpm.
2. Determine the limiting peripheral speed i; of a copper ring if the working stress

is <r„. = 3000 psi and the weight per unit volume is 550 lb per cu ft. Am. v ^ 159 fps.

3. A thin steel ring having an inside diameter of 19.96 in. is heated and shrunk
over a thin cast-iron ring having an outside diameter of 20.00 in. If each ring has
cross-sectional area A — 1.00 sq in., what are the final hoop stresses induced in the

two rings? Use Et ~ 30(10)® psi, Ee = 15(10)® psi. Ans. o’, = =* 20,000 psi.

4. The steel strap of a brake band is 2 in. wide and ^ in. thick. The brake lining

is J in, thick and is riveted to the strap by pairs of rivets which reduce the

effective width of the strap to IJ in. on account of the rivet holes. If the tensile

stress ’in the steel strap is not to exceed 16,000 psi, what normal pressure per inch of

circumference may the 10-in. drum exert on the brake lining? Am. q = 325 Ib/in.

5. A leather belt 0,35 in. thick overruns a 15-in. diameter pulley turning at 1200
rpm. What tensile stress is set up in the belt due to centrifugal action? Leather
weighs Ib/cu in. Am. or = 80 psi.

6. What angular velocity oj of the shrunk-fit ring in Fig. 1 .20 will be required to

relieve the shrink-fit pressure existing under the conditions given in Example 3?

What will be the hoop stress in the brass ring at this angular velocity? Am. co =
605 sec“*; at — 29,400 psi.
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2.1 Varialioii oT with Aspe<*t of f>o^>-Srt*tioii

III -lu- 1‘ase* oi‘ {iNiai ton-uai of a priMoatic har, l i^ 2 la. the ou a

normal cro.ss-sertion nin iniil(»rni aiul ha» rh(‘ niagnituclo a F^A as

disciEsscd in Art. 1 2. I.ot u^' rini.^idcr now ihc t'l’ ^tross on an oblique-

cross-section pej cutting the b-ar at an angle </> wuli the normal cros^-^eriion

P\ |/77

—jir T” ^

p

Fir,. IM

ran. First, \\a i-nlaU' that portion of the bar the left of the oblitpie

section pq as a free body and repn-^em the action of the renaoed portion

on this free body by the st r^^'.^ le-ultant A as .shown in I 'jg. 2.1i>. fVoin the

equilibrium condilion, tliis julernal force N must be t'qiial, oppositf, and

collinear with the external ftn‘ce J\ as .-hown. Resolving the force -S into

compimc-nt" .V and Q, normal and tangential, re'-ipoctivciy, to the plane pg,

we find

A' - /"‘-oso: Q - FAn<t>. (a)

Then since tlie area ot the oblique seetion pq is

A' — A /eos (/».

the corresponding stresse.- are

A’ F
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These are called, respectively, the normal stress and the shear stress on the

oblique section pq^ the aspect of which is defined by <>. We see that when
= 0 and the section pq coincides with the normal section mn, eqs.

(2.1) give

p
(o'n)mnx ~ (b)

and T = 0, as they should. However, as </> is increased, the normal stress

(7n diminishes, until when 0 = t/2. = 0. Thus there is seen to be no

normal lateral stress between the longitudinal fibers of a prismatic bar in

tension. On the other hand, w'ith increase in the angle 0, the shear stress t

increases to a maximum value

r = - — (c)'max

when <t>
= 7r/4 and then diminishes to r = 0 w^hen <j> = 7r/2.

These observations lead us to consider more carefully the question of the

strength of a bar in simple tension. If the bar is made of a material that is

much weaker in shear than if is in cohesion, it may happen that failure will

take place due to relative slipping between twT) parts of the bar along a 45°-

plane where the shear stress is a maximum, rather than due to direct rupture

across a normal section where the normal stress is a maximum. For example,

a short wood post loaded in axial compression, as shown in Fig. 2.2a, may

Fig. 2.2
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actually fail by shearing along a jagged plane inclined roughly by 45° to the

axis of the post. In such case, we may still specify the value of Pj

A

at which

this failure occurs as the ultimate strength of the wood in compression, even

though the failure is not a true compression failure of the material.

Similarly, during a tensile test of a flat bar of low-carbon steel with

polished surfaces, it is possible to observe a very interesting phenomenon.

At a certain value of the tensile stress a = PjA

,

visible slip bands approxi-

mately inclined by 45° to the axis of the bar will appear on the flat sides of

the specimen as shown in Fig. 2.2b. These lines, called Lueders' lines, indi-

cate that the material is failing in shear, even though the bar is being loaded

in simple tension. This relative sliding along 45°-planes causes the speci-

men to elongate axially, and after unloading it will not return to its original

length. Such apparent stretching of the bar due to this slip phenomenon is

called plastic yielding. Again, the axial tensile stress cry.p. = P/A at which

this occurs may be designated as the yield stress in tension, even though the

failure is not a true tension failure of the material. These matters will be

discussed further in the next article.

Formulas (2.1), derived for the case of axial tension, can be used also for

axial compression, simply by changing the sign of P/A. We then obtaiji

negative values for both the normal stress o-n and the shear stress t. The
complete state of stress on a thin element l)etween two parallel obilqucj

sections for axial tension and axial compression are compared in Fig. 2.3.

The directions of these stresses associated with axial tension (Fig. 2.3a) will

be considered as positive; those associated with axial compression (Fig.

2.3b), as negative. Thus Cn is positive when it is a tensile stress and negative

when it is a compressive stress. By reference to Fig. 2.3, the rule for sign of

shear stress r will be as follows; The shear stress r on any face of the element

will be considered positive when it has a clockwise moment with respect

to a center inside the element (Fig. 2.3a). If the moment is counter-
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clockwise with respect to a center inside the element, the shear stress

is negative. Stated in a different way, the shear stress on any surface of a

body will be considered to be of positive sign if it points in a direction cor-

responding to clockwise rotation about a center inside the body, otherwise

of negative sign. Several examples of both positive and negative shear

stress are shown in Fig. 2.4. These sign conventions, while arbitrary, must
nonetheless be carefull}" observed to avoid confusion.

Returning to the case of a bar in axial tension, let us consider now the

stresses on an oblique section p'q' at right angles to the section pq, as

shown in Fig. 2.5. To obtain the stresses (t\ and r' on this section, we need

m

\

^

/o'""

n

\

(o)

only to replace by 90® + in eqs. (2.1). Then remembering that sin

(90° + = cos 0, w^hile cos(90° + <>)
= - sin this gives

P P ^

ffn = "j cos^(90° + <t>)
= -T sin“* 0,

fp . IP (21')

^ 2 A ~ ~2 A
These stresses on the plane p'g' act as shown in Fig. 2.5b.
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The complete sot of stresses given by eqs. (2.1) and (2.T) are called

c<mj)lementary stresses because th(‘y occur on mutually perpendicular

planes. Comparing the two sets of formulas, we observe that

O'n + cr'n — F^/A,

r' = — r.

Thus the sum of normal stresses an and a\ on any two mutually perpen-

dicular sections of a bar in axial tension is constant and ecpial to P/A, the

normal stress on the normal section mn. Also, complcmeniarii shear stresses

:Mitary shear stresses

such as r and r' on the faces of a rectangular clement

(iMg. 2.0) also can bo established from the equilib-

^ iiuin conditions of the element itself, as follows:*

Lot dz (haioto the thi(‘kness of the element normal
^ to the plane of th(‘ paper and ds, ds', the lengths of

its edges. Then the areas on which r and t' act wall

be, respectively, dsdz and ds'dz. Multiplying the

shear stresses by the areas on which they act, we
obtain two counteracting couples, the moments of

which must balance each other. Thus

ridsdz) X ds' = r{ds'dz) X ds,

from which r = r', where t has already been represented as negative in

Fig. 2.6.

EXAMPLE 1. A short steel bar having a 1-in. X Tin. square cross-section is sub-

jected to compressive forces P = 25,000 lb axially applied as shown in Fig. 2.7.

Fig. 2.6

arc always ecfual in maqm̂ de hut opposite in sign.

TTie~THiuallry of Tom^

Fig. 2,7

Compute the complete set of complementary stresses on the sides of the rectangular

clement A oriented as shown.

SOLUTION Taking P/A = —25,000 psi and <t>
= 30® in eqs. (2.1)

an = -25,000 X (0.866)2 = -18,750 psi,

r = -12,500 X 0.866 = -10,820 psi.
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Similarly, from eqs. (2.1')

tr', = -25,(XK) X (0.50)‘ = -1)250 p.si,

r' - -(-12, .500) X 0 800 - + 10,820 psi.

As a chock on these results, it can he note<l tliat thi'v satisfy ('qs. (d).

PROBLEMS

K A high-strength tensile test specimen having a circular cross-section of

diameter d - 0.505 in. carri(‘s a total tension 1* — 23,000 Ih. Determine the

maximum shear stress t,uhx and the normal stress an on the plane of this maximum
shear. Am. r.nax = 57,500 psi; a„ ~ 57,500 psi.

A steel rod of diameter d = j in. and length I ~ 20 in. fits snugly between un-

yielding supports .1 and B at room timiperature (70° F) as shovvn in Fig. A. ('^()m-

pute tlie normal stress <r„ and the shear stress r on the oblique section pg if the

temperature drops to —30° F. The coefficient of thermal expaiision for the bar is

a ~ 7.0(10)“® in.. in./F° and the modulus of elasticity is K - 30(10)® psi. Am.
<Tn = 10.500 psi; 7 = —10,500 psi.

Fig. a

prismatic bar carrying an axial t(*nsile strt‘ss a^ Ls cut by an oblique vSr'ction

pq as shown in Fig. B. If the normal and shear stress, resp('ctiv('iv, on this section

are an = 12,000 psi and r = 4000 psi, find the value of and the angle </> deffining

the aspect of the section pq. Ans. a^ - 13,333 psi;
(f)
= 18° 20'

4)r^cfcrring tx) the case of axial tension of a prismatic bar as shown m Fig. 2.5, the

following data are given; A = 1 sq in., P = .5(X)0 lb, </> = 30°, Calculate the

stresses Cn, (r'n, r, r', for sections pq and p'q'. Ans. an = 3750 psi; a\ — 1250 psi;

T = — r' = 2165 psi.

5. A 6-in. diameter concrete test cylinder is subjected to a compressive load

P = 113,200 lb axially applied. Calculate the normal and shear stress on an

oblique cross-section defined by the angle 0 = 45°. Ans. an = —2000 psi; r =
—2000 psi.

6. Referring to Fig. B, find the value of 0 for which an = 2o''n. What is the cor-

responding shear stress t? Ans. 0 = 35° 16'; r = 0 472 a^.

P'

Fig. C
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taken into consideration that at stresses below the proportional limit the

material may be considered as perfectly elastic, and beyond this limit a

part of the strain usually remains after unloading the bar, i.e., permanent set

occurs. In order to have the structure in an elastic condition and to remove

the possibility of a permanent set, it is usual practice to keep the working

stress well below the proportional limit. In the experimental determination

of this limit, sensitive measuring instruments (extensometers) are necessary

and the position of the limit depends to some extent upon the accuracy

with which the measurements are made. In order to eliminate this difficulty,

one usually takes the yield point or the ultimate strength of the material

as a basis for determining the magnitude of the working stress. Denoting

by ayy, (Ty p , o-^it respectively the working stress, the yield point, and the

ultimate sti’ength of the material, the magnitude of the working stress

will be determined by one of the two following equations:

n }ii

Here n and /o are us\ially called factors of safety, which determine the

magnitude of th(' working stress. In the case of structural steel, it is

logical to take the yield point as the basis for cal(‘ulating the working

stress, because hoiv a considerable permanent set may occur wdiich is

not permissible in engineering structures. In such a case a factor of safety

n — 2 will give a conservative value for the working stress provided that

only constant loads are acting upon the stru(‘ture. In the cases of suddenly

applied loads or variable loads (and these occur very often in machine

parts), larger factors of safety may be necessary. For brittle materials

such as cast iron, concrete, and various kinds of stone and for such material

as wood, the ultimale strength is usually taken as a basis for determining

the working v^tresses

The magnitude of the factor of safety depends very much upon the

accuracy with which tlie external forces acting upon a structure are known,

upon the accuracy with which the stresses in the members of a structure

may be calculated, and also upon the homogeneity of the materials used.

The common practice of speaking of working stresses and factors of

safety based on some characteristic stress such as the yield point of steel

or the ultimat;e strength of cast-iron is somewhat dangerous and mis-

leading. If Pi, Pi, ,F*k are a set of external loads for a structure, what
we really mean by a factor of safety n is that if all these loads are in-

creased to nPi, nPi,. nPk, the structure will be just on the verge of

failure, wffiere “failure” of course must be clearly defined. It may mean,

in the case of a steel structure, that collapse due to yielding of some mem-
l>ers can occur, or, in the case of a concrete structure, that some member
is on the verge of fracture.
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In the case of a statically determinate system, the stresses in its members

will all increase in proportion to the applied loads even though the pro-

portional limit is exceeded. Thus, in such systems, the use of a working

stress as defined by one of ecjs. (2.2) gives the desired objective as stated

above. However, in the case of a statically indeterminate system like

those discussed in Art. 1.4, the stresses in the members depend on their

deformations. Thus, the methods of analysis used in Art. 1.4 and based on

Hookers law will not be applicable beyond the proportional limit. In

such cases, the use of working stresses as defined by ecjs. (2.2) will be more

or less meaningless.

2.3 Limit Design

We shall here discuss briefly a method of analysis of statically in-

determinate structures which will enable us to predict the loading under

which the structure will collapse due to simultaneous yielding of some or

all of its members. Such an analysis, of course, is automatically limited to

steel structures where there is a pronounced yield point of the material.

The discussion will also be confined to structures made up of simple tension

or compression members under uniform stress. When we have the magni-

tudes of such collapse loads and specify the working loads as l/n times these

values, we have realized a true factor of safety n against complete failure

of the structure. This philosophy of limit design or 'plastic analysis is

gaining wide favor among structural engineers because its use results

generally in more efficient and economical designs.’*'

To begin with, it is customary to idealize the portion OABC of the stress-

strain diagram for steel as shown in Fig. 2.8a to that in Fig. 2.10, where it is

assumed that proportionality holds up to the yield stress and that therer

after the material yields indefinitely. Such an idealized material is said to

lo-

Fig. 2.10 Fig, 2.11

*Fo»’ those especially interested 4n this subject the following references may be con-
sulted: J. A. Van den Brock, Limit Design, John Wiley & Sons, N. Y., 1935. American
Institute of Steel Construction, Plastic Design in ^teel, 1959.
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be either perfectly elastic or perfectly plastic depending on whether the

stress is below or at the yield point. It will be further assumed here that

^he yield point has the same value in both tension and compression. For

ordinary structural steel, this value may be taken as 40,000 psi.

To illustrate now the idea of limit design, let us consider the statically

indeterminate system shown in F'ig. 2.11 and already discussed in Art. 1.4,

assuming now that all three members are made of steel and have the same
cross-sectional area A. As the external load P is gradually increased, the

axial forces X and V in the members increase and are in the constant

ratio shown by eq. (c), p. 16. This continues until at a certain value Pi

of the external load, the force in the vertical bar reaches the magnitude

X = (Ty i.e., the stress in this bar reaches the yield point. At this

time, the vertical bar becomes plastic and will stretch thereafter without

further increase in tension, but the inclined bars having the tensions

Y = X cos- a are still elastic and capable of carrying further load. Thus

as the l(jad P is increased beyond the value Pi, the tensile force A' in the

vertical bar remains constant (<ry.p A) and the tensile forces V in the

inclined bars continue to increase. However during this phase of the in-

crease in external load the relationship (c) on p. 16 is no longer valid.

We have only to satisfy the equilibrium condition

X + 2K cos a - P. (a)

h'inally, the inclined bars also reach the yield point and w^e have A = F =
(Ty.pA. Substituting these values into eq. (a), we obtain

Pyp = (Ty p A(1 + 2 cos a). (b)

This repiesents the so-called collapse load or limit load of the structure.*

A working load P = Py.p./n will now have a true factor of safety n against

complete collapse of the system. We see from this discussion that a plastic

analysis of a statically indeterminate system is actually simpler than an

elastic analysis as given in Art. 1 4.

As another example of plastic analysis of a structure, consider the case of

a square frame with pin joints loaded as shown in Fig. 2.12a. This structure

is seen to be statically indeterminate, having one redundant member, but

we make no attempt here to calculate the axial forces induced in the bars

during elastic behavior. As the external load P is gradually increased, the

axial forces in the bars all increase elastically until finally a load Pi is

reached at which some bar begins to yield and thereafter will take no further

load. With further increase in P beyond the value Pi, the truss behaves as

*Throughout the above discussion it is assumed that the deformed configuration of

the structure is not essentially different from the undeformed configuration, i.e., small

change in the angle a due to deformation of the bars is neglected.
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Fig. 2.12

a statically determinate system. During this phase of loading, the axial

forces in the bars that are still elastic continue to increase until finally a

•second bar reaches the yield stress. Wheh this happens, the truss becomes

non-rigid and can collapse more or less freely due to steady yielding of the

two bars that have reached the plastic condition. Thus the limit load has

been reached.

To discover which two bars will first reach the yield stress, we consider

the equilibrium conditions of joints A and B and conclude that at all times

we must have

S: = .Si = % and S, = ~
V2

(c)

Thus if each bar has the same cross-sectional area A, it is clear that the

diagonals 2 and 4 will be the first two bars to reach the yield stress. When
this happens, the system can collapse as shown in Fig. 2.12b and from

equilibrium considerations of joint A, we may write

c = .Si + %• (d)

V2

Expressing Si in terms of S4 from eqs. (c), this becomes

P —
V2

Finally, setting 84 = 82 — (Ty.p A, we obtain for the collapse load

j-v 20" y p.A —
“^2 \^o’y.p.4. (e)

The above result is based on the assumption that each bar has the same
cross-sectional area A. Thus even in the limit condition, the bars 1, 3, 5

are not working to full capacity, their unit stresses being only see

eqs. (c). Clearly, we may now reduce the cross-sectional areas Ai, As, A# to

A/^J2 without reducing the value of the limit load Py.p. given by eq. (e).
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Therefore, taking jU = Aa = A and Ai = Az == At = A/^J2, we obtain

the optimum limit design of the truss where all bars will reach the yield

condition simultaneously when the applied load P = ^|2<Ty,^,A• Using a

factor of safety n, the corresponding safe working load will be =
^j2(Ty p

A/n.
EXAMPLE L A tension member consists of

two pieces of flat steel plate 12 in. wide by |

in. thick connected together by a riveted joint

as shown in Fig. 2.13. The rivets are | in. in

diameter and the material has a yield stress in

shear, Ty p
= 20,000 psi. Calculate the safe

tensile load Pu, for the member based on a factor

of safety n = 2 against complete failure due to

shear yielding of the rivets.

SOLUTION. This system is highly statically

indet(UTiunate, and during (dastic behavior of the

n.aterial a calculation of the true distribution of

load among the various rows of rivets represents

an impossible problem. However, as the load P
on the member is gradually increased, one row
of rivets aft<T another reaches the yield condition

in shear and thereafter transmits a constant

amount of load until finally all rivets will have

reached the yield condition. At such time, the

total load that the splice can transmit is

Py, = 10X2(rypA),

where A — 7r(0.87^»)Vd = 0.601 sq in. is the cross-sectional area of one rivet. Thus
the limit load for the spliced member is Py p. = 10 X 2(20,000 X 0.601) = 240,400
lb, and the safe working load {n = 2) becomes Pu — 120,200 lb. This example
shows the advantage of plastic analysis in riveted joints.

PROBLEMS

1. A v(*rtical load P is supported by five steel wires symmetrical!}^ arranged as

shown in Fig. A and i‘ach having cross-sectional area A = 0.10 sq in. Calculatti the

limit load for the system if <Ty p. = 40,000 psi and a = 45®, 0 = 30®. Ans. Py p
=

16,600 lb.
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2. A rigid bar AB is hinged at A and supported in a horizontal position by two

steel wires as shown in Fig. IL If each wire has cross-sectional area A = 0.125 sq in.

and a yield point of 36,000 psi, what is the safe w orking load Pu based on a factor ol

safety n = 2 against collapse due to yielding of the wires? Ans. Pu, — 2250 lb

3. A rigid bar AB of total weight \V — 2000 lb is suspended in a horizontal posi-

tion by three steel wires arranged as showui in Fig. C. If eacli wire has a cross-

sectional area of 0.125 sq in. and a yield point of 36.000 psi, w'hat additional safe load

P can be carried at D if a factor of safety n = 2 is desired against collapse of the

system due to yielding? Ans. = 3833 lb.

‘ i

\ 4. ^ ^

,

D c A
Qb f <

j
^

' In

Fig. C

4. A horizontal load P is supjiorted by a bracket consisting of three short st(H‘l rods

iirrangt'd in a vertical plane as showmdn Fig. D. 1 f each rod has a crgs.s-si'ctional area

o^ 1 sq in., ciilculato the .safe working load based on collajise due to yiidding of t!u'

jnaterial. 'Fake c^^ - 40.000 psi and n ~ 2. \m. Pu - 27,320 lb

5. If the cross-sectional areas of the inclinf'd bars in Lig. I) n'lnain at 1 sq in
,

what IS the least cross-sectional area /li for the vertical bar w’lthout rciliiciug tlie

safe working load Pw calculated in Problem 4‘^ Ans. .1 i 0.366 sq in.

2.4 Strain Energy in Tension and Compression

Let us consider again the case of a prismatic bar in simple tension, Fig.

2,14a.. Assuming elastic behavior of the material, the load-defleotioii

diagram will be a straight line OA as showm in Fig. 2.14b, and for any value

of the tensile load P' the corresponding elongation of the bar is denoted by
5'. Now if an increment of load dP' is added to P\ the elongation 5' wdll

increase by the amount and the load P' does positive w^ork, P'd5'. This

work, represented by the area of the shaded strip in Fig. 2.14b, is stored in

the bar in the form of potential energy or strain energy

^

as it is more com-

monly called. Subsequently, if the increment of load dP' is removed, the

lower end of the bar moves up through the distance dh' and the stored

energy P'd6' is transformed back into the w'ork of raising the external load

P' through the distance d5'. Thus, we may regard the elastic bar as a spring

in which energy can be stored or released accordingly as the load P' is

increased or decreased. This property of an elastic bar to absorb and release

energy with changes in loading is very important in dealing with time-

varying -or dynamic loads in structures and machines.
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The total energy stored in the bar of Fig. 2.14a under a tensile load P is

equal to the sum of all such elemental strips as P'dd' between 0 and B and is

represented by the area OAB in Fig. 2.14b. Denoting this strain energy by

U, we have

Since expression (2.3) is valid only if Hookers law applies, we also have,

between P and 6, the relationship:

6 =
PI

AE

Using this, expression (2.3) can be written in either of the following two

forms:

U - P^l

2AE
or U =

21
(2.4)

XT

I

r

(a

)

P'

In the first form, the strain energy i.s represented as a function of the

tension P in the bar; in the second form, it is represented as a function of the

elongation 5 of the bar. Both forms will be found useful in further discus-

sions.

In some applications, the strain energy of tension per unit volume is of

importance. In the case of uniform tension of a prismatic bar as in Fig.

2,14a, this may be obtained simply by dividing expressions (2.4) by the

volume Al of the bar. Thus, using the notation u = UfAl,

w = 2^
or u = —

, (2.5)

where a = P/

A

is the tensile stress and e = S/tis the tensile strain in the bar.

The greatest amount of strain energy per unit volume that a material can
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aljsorb without exceeding its proportional limit can be found by substituting

this proportional limit for a in the first of eqs. (2.5). This quantity is then

called the modulys of resilience of the material in tension. Taking the case of

steel, for example, with a proportional limit cTp.i. = 30,000 psi, we obtain

for the modulus of resiliej^ce ur = 15 in.-lb per iri^

The foregoing discussion of strain energy of a bar in tension can be used

also in the case of axial compression. In such case both a and € are negative,

but since they appear to the square in the expressions for strain energy,

this has no effect on the final result. In short, strain energy is always a

positive scalar quantity.

As an example of an application of eqs. (2.4) to a problem of dynamic

loading, consider the simple arrangement for producing tension by impact,

Fig. 2.15. A weight W, starting from rcvst, falls through a height h and

strikes a flange at the lower end B of a prismatic bar of length Z, the upper

end A of the bar being fixed. It is desired to find the maximum elongation

and stress that will be induced in the bar by such an impact. In discussing

the problem for elastic deformation, wc assume that the mass of the bar is

negligible compared with that of the the weight IT, and that there is no loss

of energy due to impact between the w^eight and the flajige at B.

After striking the flange, the w^eight W continues to

move dowmwards, stretching the bar as it goes. How-
(^ver, due to the resisting force offered by the stretched

bar, it decelerates rapidly and soon comes to rest hav-

ing stretched the bar an amount 5. At this instant the

tension in the bar is a maximum and the strain energy

.stored is given by the se(‘ond of eqs. (2.4). Neglecting

minor losses, ihis stored stTain energy in the bar must

be equal to the work done by IT in falling through the

total vertical distance h + d. Thus, we write

W{h +&) = (a)

Introducing the notation Sat = Wl/AE for the static

elongation of the bar under the action of the dead

weight IT, and solving equation (a), we obtain

6 = s.t + = 6., + (b)

where v — yl2gh is the velocity of the falling body at the moment of striking

the flange at B.

If the height h is large in comparison with Sat, eq. (b) reduces to
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The corresponding tensile stress * in the bar is then

a = bJK

I

Wir

\Al '

2g
(c)

Th(i expression under the radical is directly proportional to the kinetic-

energy oi the falling Ixxiy and to the modulus of elasticity of the material

of the bar, and inversely proportional to the volume A1 of the bar. Hem^e
the stress can be diminished not only by an increase in the cross-sectional

area but also by an increase in the length of the bar or by a decrease in the

modulus E. This is quite different from static tension of a bar, where the

stress i& independetit of the length I and the modulus IL

Consider now another extreme ease, in which h is ecpial to zero, that is,

the body IE is suddenly put on the flange B without an initial velocity.

Although in this case there is no kinetic ene rgy at the beginning of extension

of the bar, the problem is quite different from that of a static loading of

the bar. In the case of a static tension, we assume a gradual application of

the load and conseciuently there is always ectuilibrium between the acting

lr)ad and the resisting forces of elasticity in the bar. The (tuestion of th('

kinetic energy of the load does not enter into the problem at all under such

condition.s. In the ca>o of a sudden application of the load, the elongation

of the bar aiul the stress in the bar are zero at the beginning, and the

suddenly applied load begins to fall under the action of its own weight.

During this motion the resist ing force of (he bar gradually increases until it

just ei^uals ir when the vertical displacement of the w^eight is But at

this moment th(' load has a certain kinetic energy acquired during the dis-

placement Snt, hence it. continues to move downward until brought to rest

by the resisting force in the bar. Tlie maximum elongation for this condi-

tion is obtained from ec} (b) by setting v
~

0. Then

5 = 25st, (d)

that is, a suddenly applied load, due to dynamic conditions, produces a

deflection which is twice as great as that obtained when the load is applied

gradually.

The above discussion of impact is based on the assumption that the

stress in the bar remains within the proportional limit. Beyond this limit

the problem becomes more involved because the elongation of the bar is no

longer proportional to the tensile' force. Assuming that the tensile test

diagram does not depend upon the speed of straining the bar, elongation

beyond the elastic limit during impact can be determined from an ordinary

tensile test diagram such as is shown in Fig. 2.16. For any assumed maxi-

*lt is here a«<*umed that the general srhotne of stress distribution under impact is the
same as that under static load.
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mum elongation 6, the corresponding area OADF gives the work necessary

to produce such an elongation; this must equal the work W’(/i + 5) pro-

duced by the weight W. When WQi + B) is equal to or larger than the

total area OA BC of the tensile test diagram, the falling body will fracture

the bar.

From this it follows that any change in the form of the bar which results

in diminishing the total area OARC of the diagram diminishes also the

resisting power of the bar to impact. In the grooved specimens shown in

Fig. 2.18, for instance, the plastic flow of the metal will be concentrated at

the groove and the total elongation and the work necessary to produce

fracture will be much smaller than in the case of the prismatic bar shown in

the same figure. Such grooved specimens are very weak in impact; a slight

shock may produce fracture although the material itself is ductile. Mem-
bers having rivet holes or any sharp variation in cross-section are similarly

weak against impact.

The resistance of a bar to impact also depends upon the ductility of the

material. This may be seen from the tensile test diagrams of Fig. 2.17.

The curve OAC represents the load-deformation curve for a material of

higli strength but low ductility, while the curve OAB is for a material of

lower strength but high ductility. The more ductile material is capable of

absorbing much more energy before rupture than the less ductile material,

as is evider>t by comparing the shaded areas under OAB and OAC. For

this reason, a ductile material has a greater resistance to fracture under

shock loading.

EXAMPLE 1. Three tension members having the dimensions shown in Fig. 2.18

each carry the same t(msile load P. Compute the amounts of strain energy stored in

the three cases, assuming that the stn^ss is uniformly dLstributed over each crOi:is-

section.

SOLUTION. From the first of eqs. (2.4), the strain energy in the prismatic bar,

case (a), is
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wliere A = vd^/4. For case (b), the strain energy is

2(iA)E ' 2AE 162AE 16

For case (c), thf‘ strain Riit'rgy is

P\0M) Pn

Ftg. 2,18

Comparison of these three expressions shows that the? strain energy biicomes

smaller and smaller as the cross-sectional area of the bar is increased over more and
more of its length. Thus, as already noted above, a grooved bar is very ineffective

in absorbing energy under dynamic loadmg. It has l)ecn found, for example, that

the life of engine-head stud bolts as shown in Fig. 2.19 can be increased by turning

Fig. 2.19 Fig. 2.20

down the skuk of the bolt to the root diameter of the threaded portion, thus in-

creasing the amount of strain energy that the bolt can absorb under a given tensile

load.
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EXAMPLE 2. A weight W = 10,000 lb attached to the end of a steel wire rope

(Fig. 2.20) moves downward with a constant velocity i; = 3 ft per second. WTiat

stresses are produced in the rope when its upper end is suddenly stopped? The free

length of the rope at the moment of impact is / = 60 ft, its net cross-sectional area

is A « 2.5 sq in., and E = ]5 X 10‘‘ psi.

SOLUTION. Neglecting the mass of the rope, the total energy in the system at any
instant is the sum of the elastic strain energy in the rope, the kinetic energy of the

falling weight, and its potential energy relative to some datum plane (here assumed

to be a horizontal plane through the lowest position of the weight). Let 5*1 represent

the static elongation of the rope caused by W, and 5, the total elongation of the rope

when the weight is at its lowest position. If it is assumed that there arc no losses in

the over-all energy of the system, the energy just prior to stopping (when at an

elevation 5 — above the datum plane) may be equated to the energy in the lowest

position. Hence

21
+ J «» + »'(« - fi.t)

AE6^

21

Introducing W obtained from the known relation = Wl/AE into the al)ove

equation, one gets

8 8m +

Lpon sudden stopping of point .1, the tensile strcvss in tin* roi)e increases in the ratio

A-i + jl = .

a,. ^S.t\AEg ^ yjgS.,

Thus using the given numerical data, we have

a = 4000(1 + 4.17) = 20,700 psi.

We see that the dynamic stress in this case is more than five times the corresponding

statir stress W/

A

.

PROBLEMS

1. A prismatic steel bar, 10 in. long, is subjected to axial compressive forces

E = 4000 lb. Compute the amount of strain energy
:

(a) if the cross-sectional area

A = 4 sq in., (b) if A = 2 sq in.; E = 30(10)® psi. Arts, (a) V = \ in.-lb.; (b)

U = % in.-lb.

2. A prismatic steel rod of Iqngth I and cross-sectional area A hangs vertically

under its own weight. How much strain energy w stored in the bar if its weight per

unit volume is 7? Ar^s. U = y^AE/^E.
3. Compute the strain energy per unit volume and per pound which can be stored

in th6 following materials in tension without exceeding their proportional limits:

(1) structural steel; 7 = 0.284 Ib/in.^ E — 30(10)* psi, <Tp.\ = 30,000 psi. (2) tool

steel; 7 = 0.284 Ib/in.^, E — 30(10)* psi, o-p.i. = 120,000 psi. (3) rubber; 7 —
0.0336 lb7in.’, E = 300 psi, (Tp.i. = 300 psi.
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4. A vertical load P is supported by three steel

wires each of the same cross-sectional area A (Fig.

A). Compute the* vertical deflection b by equating

the strain energy JJ of the system to the external

work Pb/2 of the load P. Compare the solution with

the one made in Art. 1.4, p. 15. Assume a = 30°.

A ns. b = 0.435 Pl/AE,
5. A 1-lb weight is attached to the end of a nylon

string of length I and cross-sectional area A = 0.01

sq in. The other end of the string is tied to a fixed

support at A, The weight is now dropped from rest

at the level A and falls the full length I of the string

in the gravity field. What maximum tensile stress a

is induced in the string if it stretches elastically

whil(' bringing the falling weight to rest*^ Neglect

the weight of the string and explain why the maximum stress a is independent

of /. The modulus of elasticity for nylon in tension is /? = 4(10)'' psi. Ann. <7,nax'

= 9000 psi.

6. The lOOO-lb hammer of a pile driver freedy falling through a height /? = 3 ft

strikes the top of a wood jiilo 20 ft long and 12 in. in diameter, assumed fixed at its

lower end. Determine the maximum c-omiiressive stress <t induced in the pile if

E ~ 1.5(10)® psi. Neglect the weight of the pile and energy loss(‘s due to impact.

A ns. arnax = 20(X) psi.

7. For the system shown in Fig. 2.15, determine the height h through which the

weight W should Ik* allowed to fall in order to pnidiu^^ a maximum stress a = 30,000

psi in the rod. The following numerical data are given: W — 30 lb, I =• 6 ft,

A = 0.5 in . E ~ 30(10)® psi. An/?, h = 18 in.

8. Referring t,o the system shown in Fig. 2.20, and using all data as in Ex. 2, find

the maximum stress a if there is a short spring bcAwecai tlu' end of the cable and the

load W. Statically, this .spring elongates ] in. per HXX) lb of tension, i.e., it has a

spring constant k = 2000 Ib/in. An,s\ a = 7220 psi.

2.5 Strc.ss ("oneeiilralion in Ten^^oll or Conipres.sion IVlenibers

So far in the diseiission of simple tension and eoinprossion, it has been as-

sumed that the bar has ii prismatical form. Then for centrally applied

forces, the stress at some distance from the ends is uniformly distributed

over the cross-section. Abrupt changes in cross-section give rise to great

irregularities in stress distribution. These irregularities are of particular

importance in the design of machine parts subjected to variable external

forces and to reversal of stresse.s. Irregularity of stress distribution at such

places means that at certain points the stress is far above the average value

and, under the action of reversal of stresses, progressive cracks are likely

to start gradually from such {Kjints. The majority of fractures of machine

part.s in service can be attributed to such progressive cracks.

Stress concentration is a matter which is frequently overlooked by

designers. That the neglect of this factor in much of our engineering design

has not led to mort', frequent disaster is due to the employment of a large
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factor of safety in stress analysis and to the beneficial effect of local yielding

upon stress distribution. This does not justify, however, our disregarding it

in those cases where it does enter. In this article, the importance of this

factor will be illustrated by treating briefly stress concentration as it occurs

in tension or compression members. This abbreviated treatment*** will be

sufficient, it is hoped, to acquaint the student with the occurrence and

effects of stress concentration and to help him recognize those cases where it

must be given consideration.

A simple example of stress concentration occurs in a rectangular plate

with a small ctrcAilar hole at tlio center w'hen subjected to tension (Fig. 2.21a).

111]11

i A
1

TTh 1

1

Ttn
(b)

Fig. 2.21

_L_

L

t* 1 111

(c /

Investigation shows f that in this case there is a high stress concentration

at points m and n at the edge of the hole. The distribution of stresses over

the cross-section through the center of the hole is shown by the shaded area.

If the size of the hole is small compared with the width of the plate, the

magnitude of the normal stress at any point of this cross-section, a distance

r from the center of the hole, is given by the equation!

2V 4r* 16 r*) ^
^

*For a rather complete discussion of this subject, together with references to current
literature, see Timoshenko’s Strength of Materiala, 3d ed., Part II, Chap. VIIl, and the
article by M. M. Frocht, “PhotoeJastic Studies in Stress Concentration,” Mechanical
Engineering, August 1936. Also see papers in the Proc. Soc. Exp. Stress Analysis by the
following: Durelli and Murray, Vol. I, No, I, p. 19; Berkey, Vol. I, No. II, p. 66;
Hetenyi, Vol. I, No. I, p. 147. For numerous excellent illustrations of failures originating
at pojnts of stress concentration, see Battelle Memorial Institute, Prevention of Fatigue

of Metals, John Wiley and Sons, New York, 1941.

tSee Timoshenko, Strength of Materials, 3d ed.. Part II, Art. 56, p. 301.

tFor derivation, see Timoshenko’s Theory of Elasticity, McGraw-Hill Book Co., 1934,

p. 75.
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in which ao is the uniform stress at the ends of the plate. It can be seen that

the stress concentration is highly localized in this case. At m and w, where

a = 3<ro, the stresses decrease rapidly with increase in the distance from

these overstressed points; at a distance from the edge of the hole equal to

the radius of the hole (r = d), cr = ao only. Due to the bending action

around the hole of Fig. 2.21a, a compressive stress of magnitude o-o is set up
at the top and the bottom of the hole.

In the case of a ^all elliptical hole (Fig. 2.21b), the maximum stress is

likewise at the ends of the horizontal axis of the hole and is given by the

equation

O-rrnx = <^0^1 + 2^^
(b)

Tliis stress increases with the ratio h/c so that a very narrow^ hole perpen-

dicular to the direction of tension produces a very high stress concentration.

This explains why cracks perpendicular to the direction of forces tend to

spread. This spreading can be stopped by drilling holes at the ends of the

crack to eliminate the small radii at the ends of the crack which prodiic(‘

high stress concentration.

Small semicircular grooves in a plate subjected to tension (Fig. 2.21c)

also produce high stress concentration. Experiments show that at points

m and n the stresses are about three times the average stress applied at the

ends of the plate. The standard tensile test specimen for cement {Yig. 2.22)

is another example of a tension member with sharp variation in cross-

section. Experiments show that the maximum stress occurs at points m
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and n and that this stress is about 1 J times the average stress over the cross-

section mn.

In the case of a plate having two portions of different widths, the maxi-

mum stress occurs at points m and ri in Fig. 2,23. 'Fhis stress may be

represented by the equation:

O’n»ax ~ O'

0

in which <7o is the uniform tensile stress applied at the end of the narrow

portion and K is a numerical factor which depends on the radius r of fillets

and on the ratio b/a. This factor is usually called the /actor of stress concen-

tration. Values of this factor are given by the curves in Fig. 2.23.* It will

lie seen that the stress con(‘entration factor increases with reduction of the

radius of the fillet. A more satisfactory stress distribution at the weak

section can be obtained by using a larger radius of hllet. This fact is now
well recognized in machine design and in shop practice. It is the custom to

specify a minimum radius of fillet to prevent the development, of progressive

cracks at reentrant corners.

All the conclusions reached above concerning stress distribution assume

that the maximum stresses are within the proportional bruit of the material.

Beyond the proportional limit, stress distribution depends on the ductility

of the materia). A ductile material can be subjected to considerable stretch-

ing beyond the yield point without great increase in stress. Due to this

fact, the stress distribution beyond the yield point becomes more and

more uniform as the material stretches. This explains why, with ductile

materials, holes and notches do not lower the ultimate strength when the

notched piece is tested statically. However, in the case of a brittle material

j

such as glass, the high stress concentration remains up to the point of break-

ing. This causes a substantial weakening effect, as demonstrated by the

decrease in ultimate strength of any notched bar of brittle material.

The above discussion shows, therefore, that the use of notches and re-

entrant corners in design is a matter of judgment. In the case of ductile

structural steel, high stress concentration is not dangerous provided there

is no alternating stress. In the case of brittle material, points of stress con-

centration may have a great weakening effect and such places should be

eliminated or the stress concentration reduced by using generous fillets.

In members subjected to reversal of stress, the effect of stress concentration

must always be considered, as progressive cracks. are likely to start at such

points even if the material is ductile.

*The8e curves are taken from article by M. M. Frocht, loc. cit.^ p. 47.



CHAPTER III

BIAXIAL TENSION AND COMPRESSION

3.1 Stresses in Thin- Walled Pressure Vessels

In preceding chapters we have discussed simple

tensiiui or compression of a material in one direction.

Very often we may encounter the case of a plate or

sheet of malerial subjected to tension or compression in

two perpendicular directions at the same time. To see

how such biaxial stress may arise, let us consider, in

Fig. 3.1, a closed thin-walled container having the form

of a surface of revolution and subjected to internal

pressure of intensity p. Such containers as this are often

Fig. 3.1 encountered in stress analysis problems and are called

pressure vessels. If the wall thickness i of such a vessel is

small compared with its principal radii of curvature, the wall will have very

little bending resistance and acts primarily as a membrane in which the

stresses are tangential to the middle surface of the wall and uniformly dis-

tributed across its thickness. Such stresses are called membrane stresses

and are easil^^ calculated from equations of statics. Isolating an element A
of the wall cut out by two parallel circles and two meridians, we conclude

from symmetry conditions that only normal stresses cri and a2 act on its

edges and we obtain the case of biaxial stress.

To calculate these stresses, we refer to Fig. 3.2 and introduce the follo^v-

ing notations.

<Ti = tensile stress in meridional direction or meridional stress.

(T2 = tensile stress in circumferential direction or hoop stress.

I = uniform thickness of shell wall.

Ti — radius of curvature of meridian at A .

r2 ~ radius of curvature perpendicular to meridian at A.

dB\ = angle subtended by meridian arc of element.

dd2 = angle subtended by arc normal to meridian at A .

dsi = riddi = dimension of element in meridional direction.

ds2 = r2d02
— dimension of element in circumferential direction.*

50
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Then the stress resultants acting on the edges of the element are (Tids2t and

cr^dsit as shown in Fig. 3.2b. The two .stress resultants in the meridional

Fig. 3.2

direction have a resultant, in the direction of the normal to the element

equal to

(T\ds2t dOi — . (y,)

In the same manner, the stress resultants in the (urcumfcrential direction

have a normal resultant equal to

(J2dsit dd^,
(T^dsidS’it

n
(b)

The sum of these normal forces is in equilibrium with the normal pressure

force on the inside surface of the element
;
thus

aidSidSit
,

aTdSids^t , ,q — ptt,SioS2>
ri r2

^ '
(C)

from which
ffi

_l_
_ p

ri r j t

(3.1)

Applications of this formula for thin-walled pressure vessels of various

shapes will now be illustrated by several exampies.

EXAMPLE 1 . Calculate the membrane stresses a i and cr? for a thin-walled spherical

veasel of radius r and v/all thickness t if it is subjected to uniform internal pressure of

intensity p.

SOLUTION. In this case cri = at = tr and fi = ra = r. Then eq. (3.1) at once

reduces to

(d)
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EXAMPLE 2. Calculate the membrane stresses <ti and cto for a cylindrical tank of

radius r, length I, and wall thickness t if it carries a uniform internal pressure p (see

Fig. 3.3).

SOLUTION. In this case - co and r 2 = r so that eq. (3.1) reduces at once to

This is the same as the result obtained for hoop stress in the case of a thin ring as

discussed in Art. 1.5, p. 22.

To find the princi])al stress ai in the longitudinal direction, we cut the cylinder

in two by a section normal to its axis of revolution and consider the equilibrium of

that portion to one side of this section as shown in Fig. 3.3b. In this case the re-

I

(Tj 2vrt

(b)

3.3

sultant thrust on the end f)f the tank is pinr^ and this force must loe balanced by the

uniform longitudinal stress <Ti around the circumfenmce of the cylinder. Thus

<Ti • 27rr/ = irr^p,

from which (0

Comparing eqs. (e) and (f), we see that in the case of a circular cylindrical tank sub-

jected to uniform internal pressure, the longitudinal stress cry is just half as large as

the hoop stress o’ 2 .

EXAMPLE 3. An open conical tank uniformly suspended around its upper rim is

filled with water to a depth h as shown in Fig. 3.4. Calculate the membrane stresses

at the level mn and find the value of y for which each of these stresses will be a

maximum.
.SOLUTION. Since rj = 00 in the case of a conical vessel, eq. (3.1) gives

0-2 =
t

(g)
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where ro is the radius of circumferential curvature at the level mn as shown. Sub-

Ptitutinp, in eq. (g),

and

y tan a
7* o =

COS a

p ^ w{k -
?y),

where w denotes the weight per unit volume of

water, we obtain

_ w(h — y) y tan a

t cos a
(h)

for the hoop stress at the level mn. To find the

value of y for w'hich this stress is a maximum, we
set the d^'rivative of expression (h) equal to zero

and obtain

doi

dy

w tan a

i cos a
{h - 2y) = 0 ,

Fig. 3.4

from whicli y = h/2. Then with this value of y, eq. (h) gives

^ ^
wh’^ tan a

4^ cos a
(hO

The str(‘ss (Ji in the meridional direction at the level inn is found from th(^ condi-

tion that the total weight of th(‘ shaded volume of water in Fig. 3.4 is supiiorted by
the vertical com})on(‘nt of the meridional tension on the circumference mn. Thus

(Ti • 2tij tan a t

'

cos a — ivQt — »y)7r/y^ tan‘‘^ a -f- tan'-* a
3

This gives

Winn a/ 2 \
(Ti - I hy - ~y^\

21 cos a\ ^ )

^’e obtain

Ti wt^na/ 4 \

Again setting dai/dy = 0, we obtain

dui

dy

from which y = 3V4- With this value of //, cq. (i) becomes

tan a
(tr i)inax —

cos a

ii)

(iO

PROBLEMS

1. What is the maximum allow^able internal pressure p for a standard 2-in.-

diameter steel water pipe if the allowable tensile stress is 16,000 psi? The actual

inside and outside diameters of such a pifie an' 2.067 in. and 2.375 in., respectively.

Ans. p
— 2380 psi.

2. Calculate the largest safe diameb'r I) for a spherical pressure vessel made of
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thin magnesium plate 0.10 in. thick if the allowable tensile stress is 12,500 psi and

the internal pressure p = 20 psi. A ns. D — 250 in.

3. A vertical steel standpipe is 16 ft in diameter and stands 100 ft high. If the

allowable working stress in tension is = 16,000 psi, what is the required wall

thickness Assume that the pipe is filled with water for which w = 62.4 Ib/cu ft.

Ana. f = 0.26 in.

4. For the conical vessel shown in Fig. 3.4, the following data are given: = 10

ft, a = 22° 30'. Determine the required wall thickness t if the tank is filled with salt

water (iv = 64 Ib/cu ft) and the working stress in tension is Cw == 18,000 psi.

dns. t = 0.0033 in.

5. A truncated conical tank having the dimensions shown in Fig. A is filled with

water (w; = 62.4 Ib/ft^). Calculate the membrane stresses a] and an for an element

A of the wall situated as shown in the figure if t = 0.012 in. Ans. aj - 1620 psi;

0-2 = 7760 psi.

6- A cylindric.al water tank having a hemispherical bottom as shown in Fig. H
hangs from its upper rim and is filled with water. . Calculate the membrane stresses

a I and a 2 for a small element of the wall at A if the thickness ist = 0.012 in. Ans.
a I = 5720 psi

;
a 2 = 5460 psi.

7. A thin hemispherical shell of uniform thickness t and radius R is supported on a
smooth horizontal floor as shown in Fig. C and subjected to its own weight of

intensity g per unit of surface area. Compute the membrane stresses o’

1

and a 2 for an
element at A. Ans.

Fig. C Fig. D
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8, A rubber torus inflated to a pressure p = 10 psi has the dimensions shown in

Fig. D. Calculate the membrane stresses on an element at A if a = 12 in., b — 15

in., c — 9 in., t = 0.1 in. Am. ai = 350 psi; co = 150 psi.

1

3.2 Further Analysis of Biaxial Stress

In the preceding article, it has been shown how an element of material

may be subjected to tensile or compressive stresses in two perpendicular

directions simultaneously. Considering again such an element (Fig.3.5a),

we shall now study this state of biaxial stress in tnore detail. Here, we
denote the two given stresses by cr* in the x direction and jy in the p-

direction and assume that is algebraically the larger of the two.

We may now inquire what stresses exist on a plane whose normal n makes

the angle <#> with the .r-axis, as shown. To answer this question, we isolate,

as a free body, a triangular portion abc of the element as shown in Fig.3.5b.

Let dAx and dAy denote the areas of the faces ab and 5c, respectively, and

dA the area of the face ac. Then the stress resultants on the faces ab and

(a) (b) (c)

Fig. 3 5

ac, respectively, will be c^dAx and cydAy, as shown. To balance these forces,

we shall need both a normal stress resultant OndAn and a shear stress

resultant rdA „ on the inclined face ac of the element as shown. Noting that

dAx — dAn cos and dAy = dAn sin
<t> and projecting all forces on the n-

axis, we must have, for equilibrium of the element,

OndAn = o-x(dAn cos (ff) COS 0 + (Ty{dAn sin </)) sin <#>,

from which

cTn = o-x cos^ A- <Ty sin* + o-y) + J((rx — ay) cos 2<l}. (3.2a)

In the same way, projecting £^1 forces on the element on the direction ac,

we obtain

rdAn = (Tx(dAn cos 4>) sin ^ — ay{dAn sin </») cos <t>.

from which

T = (<r, — ay) sin </> cos = ^(cr* — ay) sin 2 (p. (3.2b)
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Thus expressions (3.2a) and (3.2b) give the magnitudes of normal stress (r„

and shear stress t on any plane, the orientation of which is defined by <l>.

If we take an angle <(>' = 90° + <l> and remember that sin (90° +<<>)
—

cos (p while cos (90° +<?>)== —sin eqs. (3.2a) and (3.2b) become

crj = (Tx sin^ <t> + ay cos^ (p = ^{<Tx + ay) — i(<^r — ay) cos 20, (3.3a)

r' = —{ax — ay) eos 0 sin 0 = — ^{ax — ay) sin 20. (3.3b)

These expressions represent the normal and shear stresses on a plane per-

pendicular to the plane ac (see Fig. 3.5c). As discussed in Art. 2.1, the

stresses given by eqs. (3.2) and by eqs. (3.3) are called complementary

stresses. In this more general case of biaxial stress, the sum of comple-

mentary normal stresses an and an is again constant and equal to a* + ay,

the sum of the two given stresses. Likewise the complementary shear

stresses r and t' are seen to be equal in magnitude but of opposite sign.*

We continue to use, for shear stress r, the sign convention discussed in

Art. 2.1: that is, a shear stress on any face of an element is positive when
its sense of rotation about a center inside the element is clockwise. Thus

the negative shear stress r has been shown in its proper direction ni

Fig. 3.5c.

Further examination of eq. (3.2a) will show that as 0 varies from zero to

ir/2, the normal stress cr„ varies from ((rn)max = ax, when 0 = 0, to ((rn)m»n =
Oy, when 0 = 7r/2. Thus the stresses ax and <Ty represent, respectively, the

maximum and the minimum values of normal stress and are called the

principal stresses. Similarly, it will be seen from eq. (3.2b) that the shear

stress T is a maximum when 0 = 7r/4 and that the magnitude of this maxi-

mum shear stress is

^luHx ~ iKax ^i/)j (3 *1)

i.e., half the difference between the two principal stresses. If the two

principal stresses are equal {ax == ay), there will oe no shear stress on any

plane such as ac in Fig. 3.5b.

With proper changes in sign, eqs. (3.2) and (3.3) can be used also if one

or both of the principal stresses ax and ay should be compression, i.e.,

negative. If one principal stress is tension and the other is compression,

then the tensile stress will be taken as a* and the compressive stress as ay.

If both principal stresses are compression, the smaller one should be taken

as ax, since it has already been assumed that ax is algebraically greater

than ay.

So far, we have considered only the state of stress for an element sub-

jected to biaxial tension or compression. We shall now discuss briefly

the strain or deformation of such an element. When there are principal

stresses ax and ay in both principal directions x and y of the element (Fig.

3.5a), the strain in either of these directions will depend not only upon
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the stress in that direction but also upon the stress in the orthogonal

direction because of the Poisson ratio effect discussed in Art, 1.3. In the

X direction, within the elastic limit, the plate will have positive strain

= ffj/E and at the same time it will have negative strain €* =

due to lateral contraction associated with the tensile stress o-y. The same

reasoning holds for total strain in the y direction. Thus in the case of

biaxial tension of a thin plate, the total or net strains will be

MtTj/ ]

E~~E' i

I

E E ‘

j

(3.5a)

In the ^-direction normal to the plane of the plate there will be lateral

contraction due to the Poisson ratio effect associated with each of the princi-

pal stresses cr* and ay so that the net strain in this direction becomes

-h (Ty). (3.5b)

Very often in experimental stress analysis the principal strains ti and ey

will be measured directly by strain gages. Then the corresponding stresses

<T* and ay can be calculated from ec4S. (3.5a), which, for this purpose, may be

put in the form

O’x *“
^ 2

*

1 - #1
*

_ («» + f

1

(3.6)

If the plate carries compression in either principal direction, eqs. (3.5) or

(3 ()) can still be used by taking the corresponding tr or e with negative sign.

EXAMPLE 1. A thin circular steel plate of radius r and thickness t is subjected to

radial stress a unifornxly distributed around its circumference as shown in Fig. 3.6.

Determine the state of stress on any element such as A and also the unit volume
change of the entire plate.

SOLUTION. Since both the plate and the

external loading are symmetrical around the

center 0, it follows that the deformed plate

will remain perfectly circular in form. This

means that both the radial and circumferential

strains must be uniform and equal throughout
the plate. Then it fallows from eqs. (3.5a) and
reference to the elements A and B in Fig. 3.6

that (Tx = cTy = (T. Thus we have the case of

equal principal stresses.

Before deformation, the volume of the plate

is Fo *= ttH. After deformation, the new
radius is r(l -f €,) and the new thickness is

FI + €,). Thus the new volume is F = Fio. 3.6
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wrHil -h -f (z)- Exiianding this and keeping only terms of first order in

the small quantity e, it reduces to E = TrrH(l + €14* ^x), and the total volume
change becomes AV = E — Vo = TrrH(€t + 2c*). The corresponding unit volume
change is AV/Vo = 6^ + 2€r. Now for <r* = = c. eqs. (3.5a) give

and eq. (3.5b) gives

Cr = €y = - (1 ~

With these values for strains, the unit volume change becomes

AE
Eo

2g
;(1 - 2m). (a)

Taking E = 30(10)'’ psi. a - 30(10)^ psi, and m = i* this gives

AE a ^
E ” 30(U))«

0.001

.

I'RO HLKMS

1. Determine the stresses Cr,, c'n, t, and r' for the element in Fig. 3.5 if cTt =

10.000 p.si, (7y = —5000 psi, and 0 — 30°. A ns, cf„ = 6250 psi; ej'n = —1250 psi;

r =: — r' = 6500 psi.

2. D(dt‘rniine tli(‘ stresses cr„, o-'„, r, and r' for tl\(‘ olennuit in Fig. 3.5 if a* —

-5000 psi, (Ty - - 10,000 psi, and 0 - 30°. Ans. = -6250 psi; a'n = -8750
psi; T — — t' = 2165 psi.

3. For the <‘lement in Fig. 3.5, the following values an* given for the |)rincipal

stresses: a* = 4000 psi, Uy = 3000 psi. Calculate the value of the angle’0 for which

the shear stress r will be a maximum and evaluate the corresponding stresses (r„, a'n,

Tmax- Ans. (7n = (t' n = 3500 psi
; Tmax = 500 psi.

4. Using the data given in Problem 1, calculate the principal strains c* and ty if

E = 30(10)« fKsi andM = 0.3. Ans. e* = 383(10)-«; c^ = -267(10)'®.

5. A rectangular plate subjected to biaxial stress is found to have principal

strains c, = 0.00100 and €y = — 0.0(X)70 as determined by strain gages. What are

the corresponding principal stresses if = 30(10)® psi and m = 0.3? Am. o’* =
26.000 psi; Cy = —13,160 psi,

6, A cube of concrete is compressed in two perpendic-

ular directions by the arrangement shown in Fig. A.

Calculate the unit volume change for the cube if it is

4 in. on a side. Assume that the compressive stresses

are uniformly distributed over its faces and take P =

20,000

lb, M = 0.1, and E = 4(10)® psi. Ans. AV/V ==

-0.000707.

7. A thin circular brass membrane is suppdi;ted around
its rim by a rigid circular brass ring and at rtoifi tem-
perature (70°F) the membrane is free from stres^ What
principal stresses o-* and cry will be induced in the mem-
brane if its temperature falls to zero degrees? Assume
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that E - 14(10)® psi, m = 0.3 and a = 10.4(10)“® in./in./F°. Arts. =
i 4,550 psi.

8. The thin-walled cylindrical tank shown in Fig. 3.3, p. 52, has radius r = 20 in.,

wall thickness t = i in., and is subjected to internal gas pressure p = 110 psi.

Calculate the magnitude of shear stress t along a 45°-helix. A/w. r = 4400 psi.

9. Derive a formula for the maximum shear stress T,„ax in the plane of the wall of

the conical tank filled with water as shown in Fig. 3.4, p. 53. Ans.

_ Swh^ tan a
rmnx —

64f cos a

3.3 Mohr’s Circle for Biaxial Stress

Contiider again the rase of a thin plate subjected to biaxial tension as

shown in 3.7a. Then as discussed in Art, 3.2, the normal and shear stresses

on any plane whose normal n makes an angle 0 with the .r-axis will be given

by eqs. (3 2) repeated below for convenience of reference.

+ (Tt,) + ^(<rx — (Ty) COS 20,

r = - ay) sin 20.

(a)

Ir can easily be shown that these are the equation.s of a circle in a a-7 plane,

with the angle 0 as a parameter. Introducing the notations

“b ~ rniaxi (b)

we can write ocjs. (a) in the more compact form

(T n “ O'fxv H” T'n'.ax COS 20,

T = r„,ax sin 20.
(c)

Then to eliminate the parameter 0, we note from the second of eqs. (c) that

cos 20 = .^1 — sin^ 20 = -^1 —

Substitution of this in the first of eqs. (e) gives

(d^

or

^11 ^BV —

(<rn *“ (T^y)^ + = Tmax^.

This is the standard form for the equation of a circle having a radius

Tmax = — ffy) and Centered on the cr-axis at <r„v = + (^v) as shown
in Fi^ 3.7b. This is called MohEs arch for biaxial stress and it is very

useful as a graphical means of solving eqs. (a).

Consider, for example, any point D on the circle and denote the angle
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ACD by 2<t> as shown. Then from geometry it can be seen that the co-

ordinates of point ]) are

()E ~ OC + Cl) cos
'2<t>

== |(<7x 4" 4' — (^y) cos 2<^,

1)E - CD sin 20 = |(crx ~ <ry) sin 20.

Thus the coordinates of point J) in Fig. 8.7b represent the values of <Tn

and T for th(‘ plane whose aspect is defined by 0 in Fig. 3.7a.

For each different aspect of plane in Fig. 3.7a as defined by 0, there is a

corresponding point on the circle, the coordinates of which represent the

normal arid shear stress on that plane. For example, when 0 = 0, the

normal n coincides with the j-axis and point D on the circle coincides with

point A, giving cr„ = cr^ and r = 0. Whfui 0 = 45"", 20 = 90° and point I)

falls at F giving a-,, = ^((Tx + (^y) and ). When

0 = 90°, the normal n coincides wi4i the //-axis and the corresponding

position of point 1) is at B on the circle indicating On = <^y and r = 0. It

will be noted also that the coordinates of point D' diametrically opposite

point D on the circle give the complementary stresses On and r' as defined

by eqs. (8.8). Thus all possible information about the stresses on various

planes can be found from Mohr\«5 circle.

If either principal stress is compression, it must be taken with negative

sign so that in general the center C of Mohr's circle may lie to either side of

the origin in Fig. 3.7b, but always on the <T-axis. Several particular cases

are illustrated in the following examples.

^:xAMPLE 1 . Construct Mohr's circle for the case of biaxial stress of a thin plate

where Cy = —ax as shown in Fig. 3.Sa.

SOLUTION. In this case a^y — i(ax -f ay) = 4((t, — (Tx) = 0 and the center C of

the circle falls at the origin, while its radius Xmax == — <Ty) = J(2o’x) = a^.

Thus Mohr's circle will be as shown in Fig. 3.8b.
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(a) (b)

Fig. 3.8

EXAMPLE 2. Construot Mohr’s circle for the case of simple tension where cr^ = 0,

as shown in Fig. 3.9a.

(a) (b)

Fig. 3.9

SOLUTION. In this case, - i (<^r + cr^) - and tjie circle is tangent to the r-

axis as shown in Fig. 3.9b.

EXAMPLE 3. Construct Mohr’s circle for the case of biaxial stress shown in Fig.

3.1 where o-j is tension and cry is compression. Assume \<Ty\ ~ 2 |cr,| .

Fig. 3.10

SOLUTION. In this case <r»y = §((t, + a,) = -iffxandrm.x = i(ffi - O =
Thus Mohr’s circle will be as shown in Fig. 3.10b.
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PROBLEMS

1. Construct Mohr’s circle for the particular case of biaxial tension where

(J X “
2. A circular cylindrical steel boiler (see Fig. 3.3) having radius r = 5 ft and wall

thickne.vs t = i in. is subjected to internal pressure p = 100 psi. Using Mohr’s
circle, find the normal stress (r„ and the shear stress r on the edge of a helix which
makes an angle <t>

= 60° with a generator. Arw. <Tn = 10,500 psi; r = 2600 psi.

3. Construct Mohr's circle for the case of biaxial stress shown in Fig. 3.7, if

(Xi ~ 10,000 psi o-y = —5000 psi. From this circle, find the stresses (r'n, t, r', for

an clement so onentaU'd that (p - 30°. Ans. (t„ = 6250 psi; (r\ = —1250 psi;

T - — t' = 6500 psi

4. Find the normal and shear stresses on the element of the preceding problem if </>

IS so chosen that the shear stress is a maximum. Ans. ffr - — = 2500 psi;

T - ~ r' = 7500 psi.

5. Referring to the conical water tank shown in Fig, 3.4, assume that a = 30°,

= 12 ft, t = 0.05 in. and w = 64 Ib/cu ft. Construct IMolir’s circle in such case

for an element of the w’all, the location of which is defined by y = ih, and find the

magnitude of normal stress (Xn on the plane of maximum shear stress at this point.

Ans. (Tn — 2130 psi.

6. Referring to Fig. 3.10 and assuming cr^ = 10,000 psi, cry = —20,000 psi, find

the value of defining the plane on which an vanislies. What is the magnitude of

shear stress r on this plane? Ans. 4> = 35° 15': r ~ 14,100 psi.

3.4 Pure Shear

Let us consider now the pariicular case of biaxial stress where a^ —ay
as shown in Fig. 3.11a. In such ease, Mohr's circle wdll be as shown in

Fig. 3.11b. From points F and Fi on the circle, it is seen that the maximum
shear stress on 45 '‘-planes in r^ax — Azaj and also that the normal stresses

On and o'n on these planes vanish. This means that the. square element

Gcbd oriented at 45° to the directions of principal stress is subjected to shear

stresses only on its edges and is said to be in a state of pure shear. This

parti(‘ular state of stress is of special interest and it will now be examined in

further detail,

Consider first, the deformation of the element acbd shown to a larger

(b) (c)

Fia. 3.11
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scale in Fig. 3.11c. Since there are no normal stresses on its edges, these

edges will remain unchanged in length during deformation of the element.

The horizontal diagonal ab will simply elongate and the vertical diagonal

will contract so that, after deformation, the element will have the form of a

rhombus as shown by dotted lines. Thus, the original right angles at a

and b become t/2 — 7 and those at c and d become 7r/2 + 7, wher 7 defines

the amount of angular deformation of the element. This quantity is a pure

number and is called the shearing strain, analogous to the tensile or com-

pressive strain e as discussed in Art. 1.3. To visualize this stress condition

more readily, we rotate the clement acbd by 45^ and place the edges b'd'

and bd in juxtaposition as shown in Fig. 3 12. Then the angle rbc' i-i seen to

represent the previously defined 7 and its value is

cc' b

~
be

~ T

where 5 is the lateral displaccMiU'Ut ot the

upper face of the element relative to the lower

face and / is tlie distance between the.se faces.

Thus the analogy between shearing strain 7

and extensional strain e is complete, except

that in the case of shear the displacement b

takes place at right angles to the length / so

that we see the ratio b'l as an angle.

Within the elastic limit of a material, it is

reasonable to assume that the shearing strain

7 is proportional to th(‘ shearing stress r that

produces it. In fact, experiments with

materials in pure shear show^ this to be the case, so that

where the constant of proportionality, denoted by G, is called the modulus

of elasticity in shear or simply the shear modulus. Like the tension or com-

pression modulus it has the dimension of stress, Ib/in.^

In the case of pure shear, there will be no change in volume of an element

during deformation. To show this, wt must return to eqs. (3.5) defining

ihe strains €1 ,
ty, e-j, in the case of biaxial stress. "Then for <ji

= —ctu — r,

these expressions become

ex = ^ (1 + m), ty = - g (i + m), €* = 0. (3.8)

Then the unit volume change AVfV = + ey + e, — 0.

It is seen from Fig. 3.11a that the linear strains €, and in the directions

Fig. 3.12
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of the diagonals ab and cd of the element <ichd must be geometrically related

to the shearing strain 7. Out of this, comes an important relationship

between the shear modulus G and the tension modulus E, which will now be

established. Fsing the first two of eqs. (3.8) for linear strains and referring

to Fig. 3.11c, we see that

oa' — (>a(\ + ex) = oa I + (I +m) ,
I

oc/ = OC(l -f €.,) = 1 (1 + /x)

(a)

Alsc; from the geometry of the right triangle c'oa'y we have

tan oa'r/ ~ tan
or'

oa'

1 - (1 + m)

f

^
(f + m)

since oa = oc in eqs. (a). Finally, from trigorjometry,

tan

tan 7 - tan ^4 2

1 + tan j tan ^4 2

1 - 7/^
.

1 +y/2

(b)

(c)

.since tan r/4 - 1 and (an y/'2 ~ 7/2, the angle 7 being very small.

Comparing expressions (b) and (c). we conclude that

’2 - g (1 + .1 (d)

Substituting for y its vnliK' from e((. (3.7), thi.s becomes

i; S

E
fioiu which G ^ ^TT—;—r (3.9)

-2(1 + m)

This theoretical relationship between the shear modulus G and the

tension modulus E is in good agreement with that found by experiment.

Taking, for mild steei, E = 30 (10)® psi and m = 0.3, we find G =
1 1.5 (10)®

psi. If Poisson’s theoretical value of the ratio ^ = 0.25 is used, eq.

(3.9) gives G = 12 (10)®psi. It will be shown in the next chapter that the

modulus of elasticity in shear can bo determined experimentally by twisting

a circular shaft. Such experiments with structural steel specimens show
the value of G to lie within the above limits,

'
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PROBLKMS

1. Jri Fig. 3.11a, (Tx = —o-y = 20,000 psi. Calculate the magnitude of the shear-

ing strain y for the element acbd, if G = 12(10)® psi. Am. y = 0.00167.

2. A cIos(h1 right circular cylindrical tank 10 in. in diainetci is made of J-m*

steel plate and is subjected to an inti^rnal pressure of intensity p = 5(K) psi. Cal-

culate the maximum shearing strain y in the wall if K ~ 30(10)® psi and Poisson's

ratio M = 0.3. Am. y - 0.433(10)”^:

3. Referring to Fig. 2.21a on p. 47, eah-ulate the magnitude of maximum shearing

strain y at the circumlercnce of the small circular hoh^ if the axial tensile stress is

(Tj
- 10,000 psi and p = 0.25. Aris. y = 0.00125.

3.5 Riveted and Welded Joints in Pressure Vessels

In the actual fabrication of vari-

ous kinds of pressure vessels as dis-

cussed in Art. 3.1, it is usually neces-

sary to have one or more joints or

seams as shown in Fig. 3.13. Such

joints may be either riveted or welded

depending upon the material and the

service conditions to which the vessel

will be subjected. The general ob-

jective is to obtain a joint that will be

tight and as strong as possible.

Riveted joints for boilers and other

pressure vessels are of two kinds: lap joints and butt joints as illusti'ated

in Fig. 3.14a and 3.14b. The rivet.s in Mich joints are driven red hot so that,

after cooling, they scpuMv.e the plates tiglilly together. Thus when intt*rnal

pressure is applied to the shell, ndativi* motion between the plates is pre-

ented by friction as well as })y the shearing strength of the rivets. In fact,

ouK after the friction is overcome do the rivets begin to work in shear. We
see that the behavior of a riveted joint under load is extrmnely complex. To
simplify the problem, it is usual practice to neglect the friction completely

and to assume that the riv(‘ts carry the load in shear with the shearing stress

Fig. 3.14
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uniformly distributed over the cross-section of each rivet as discussed on

p. 5.

Besides shearing of the rivets, there are other ways by which a riveted

boiler joint like those in Fig. 3.14 can fail after friction has been overcome.

These possible modes of failure are illustrated in Fig. 3.15. As already dis-

Fig. 3.15

cussed, the rivet may fail in shear across the section aa, Fig. 3.15a, al-

though it may undergo considerable bending before this happens. The
resistance of the rivet lo shear failure can be increased by increasing its

diameter. A second possible mode of failure is shown in Fig. 3.15b, where

cru.shing of the plate in compression just behind the rivet allows the joint

to open up. Resistance to this type of faih4re can also be increased by using

a larger diameter for the rivet or by increasing the thickness of the plate.

If the rivets are too -‘losely spaced, the net section of the plate between

rivet holes will be so much nKluced that failure of the joint may take place

due to tearing of the plate in tension between rivets as shown in Fig. 3.1 5o.

Resistance to such failure can be increa.sed by increasing the spacing or 'pitch

p of tlie rivets along the .seam (see Fig. 3.13).

The problem of design of a riveted boiler joint consists of adjusting the

plate thickness, the rivet diameter, and the riv^et pitch so that the joint is

equally strong against each mode of failure. For such design of steel pres-

sure vi^ssel joints, the ASME Boiler Code recommends the following ulti-

mate stresses to be used with a suitable factor of safety, say n = 5.

tension: at = 55,000 psi,

shear: t = 44,000 psi,

crushing: Jc = 95,000 psi.

Obviously, the strength of a riveted boiler joint can never be as great as

that of the shell itself. The ratio of the strength of the joint to that of the

shell proper is called the efficiency of the joint.

EXAMPLE 1. The cylindrical container .shown in Fig. 3.13 is made of steel plate

of thickness ^ } in. The rivets are fj in. in diameter and the pitch p = If in.

Calculate the ultimate strength of the joint and its efficiency, using A.S.M.E.
Boiler Code specifications.

SOLUTION. Referring to Fig. 3.14a, let us consider a length of joint equal to the
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riv(4 pitch p = 1.625 in. 'fhcHi for this length f)f iiiiflisturl)e(l shell the strength is

55,000 X 0.25 X 1.625 = 22,300 lb. The croM.s-sectioiial area of one rivet is 0.371

in.’^ and the com\sporiding shearing strength is 44,(KK) X 0.371 = 16,300 lb. Tlie

projected area behind one rivet is 0.25 X ji - 0.172 in.'-', and the corresponding

crushing stnnigth is 05,0(K) X 0.172 - lti,3(K) lb. The net cross-s('ctJonal area of

plate between rivet holes is 0.25(1.625 — 0.68S) — 0.234 in.'^ and the corresponding

U'aring strength of the joint i.s 55,000 X 0.234 - 12,000 lb. This is the smallest

value and therefore reuresents the strength of th(‘ joint. I'he corresponding efficiency

is 12,900 22,300 = 0.58 or 58 per cent.

The efficiency of the joint can be improved by increasing the rivet pitcli so that

the tearing strength comes up to the strengths in shear and crushing. The equation

for determining the optimum pitch is

(p
- 0.688)0.25 X 55,000 = 16,300,

from which p = 1.875 in. The strength of this length of undisturbed shell is

55,000 X 0.2.5 X 1.875 ~ 25,800 lb. Hence the new efficieney becomes 16,300

25,800 = 0.63 or 63 per cent.

Welxied Joints. With the pre.seiit day advaruH'S in welding techniques,

welded joints for pressure vessels and structural connections are rapidly re-

placing riveted joints. Typical lap lotdds and butt undds for the longitudinal

seam of a pressure vessel are shown in Tig. 3,10. Tu the (‘.ase of a lap weld,

( a ) Lap Weld ( b ) Butt Weld

Fig. 3.16

Fig. d.lOa, the thinnest section through the weld bead is called the throat

of the w^eld. The length I of the bead is called the length of the weld. The

product of the throat dimension and the length of the bead gives the cross-

sectional area of the weld to be used in calculating its strength. In the case

of a butt weld, Fig. 3.16b, the thickness t of the plate would be taken as the

throat dimension.

The calculation of the strength of a welded joint is largely empirical

because of the difficulties invDlved in making any rational analysis owing

to the presence of stress concentrations. It is usually assumed that the

strength of a weld is the cross-sectional area of the throat multiplied by an

arbitrary working stress. The Code for Fusion Welding specifies a working

stress of 16,000 psi in tension or compression for shielded arc welds. If the

weld is subjected to shear, the working stress is 13,600 psi.
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EXAMPLE 2. A 6 in. X 6 in. X i in.

iinglp-section t»‘nsion mem})er is welded

to a gusset plaU' by two side fillet welds

which act in direct shear as shown in Fig.

3.17. The total tensile force in the mem-
her IS F — 103,500 lb and each weld bead

has a throat dimension t = 0.353 in. If

the working stress for the weld metal in

shear is = 13,600 psi, what lengths h

and h should the two weld beads have?

SOLUTION. The line of action of the ten-

sile force P acts through the centroid of

the angle section defim'd by the distances a, 1.6S in and = 4.32 in. In

order to balance the load /^ the resultant of the two WTld resistances must have
the same line of action as P. Then if these two forces are denoted by Q\ and Q 2 ,

it

iollows that the following condition^: of e()uilibrium must be fulfilled:

Q. + - P,

QiOi

from which, with tin' given numerical data.

Qi - 74,50011). Q 2
=- 20,00011)

Since th(‘ .^h(‘aring resist auee ol eaeh beail jx'r inch of length is

«/ == 0 353 > 13,000 - 4.S()0JI>/in..

the eorresjionding lengths h and 1 2 should be

‘2* T-
°2

i
Q

(

1

“'Xi-—

—

'^filler

Fig. 3.1<

/,

74,500

"isoo
15.5 m ,

29,m)0

4806”
6.05 in.

P H O R L I’ M ^

,
1. A 4 ill X I m. xtei'l stra)) is spliced as shown m h’lg The rivets are 1 in. in

diameter. '['he allowable \\f»rking stresse\s are Tu — 10,000 psi in shear and
jTu = 16,000 psi m tension. C aleulah* the safe load P for the spliecal strap and tin'

efficiency (4 tiie joint, l/i.v. P ™ 47,100 lb; eff. == 73.6%.
2. Referring to Fig, 2.13, p. 3S find the yield limit load P for the spliced ine-nber

if the rivet row I is omitted. What is the efficiency of the joint under these condi-

tions? Assume (7, p
- 40,000 i)si. r, ,>

-- 20,000 psi. Ans. Py p
= 216,000 lb,

('flf. - 60';h

3. Referring to Pig, 3.17, find the number of |-in.-diameter rivets required for

this connection if shear is assumed to govern and the working stress in shear is

Tu, — 10,000 psi. Assunu' that the rivc'ts are so arranged that the centroid of the

group lies on the line of action of the tensile load A 71 S. 17 rivets.

4. A water tank made (4 J-in. steel plate has a riveted lap joint. The
dianieter rivi'ts a-e arranged in three rows. The pitch in the two outer rows is 5 in.-

that m the inner row is 21 m. Using working stresses Gu, ^ 16,000 psi in tension

and Tw — 12,000 ])si in sliear, find the safe internal pressure p if the tank is 4 ft in

diamettT. An.v. p = 207 psi.
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A spiral-riveted penstock 40 in. in diameter is made of steel plate ^ in. thick.

The spiral seam is a single riveted lap joint with rivets, each rivet having a

safe resistance to shear of 5000 lb. The pitch of the spiral (helix) is 7 ft. What is

the required rivet spacing if the internal water pressure is = 160 psi? Assume
that there is no longitudinal load on the pensi-ock. Atis. 2.81 in.

6. A double-riveted butt joint for a 6-ft-diameter steam boiler has the following

dimensions: rivet diameter ^ in,, outer row pitch = 5j in.^ inner row pitch

= 2J in., thickness of main plate = J in., thickness of cover plates = A in. Using
ASME Boih^r Code recommendations, find the mode of failure, the iiltiniate internal

pressure p, and the efficiency of the joint. Ans. p
— 640 psi; efT. — 83.7%.

7. A steel plate 4 in. wide by | in. thick is connected to a gusset plate by means
of two .side filUd welds as shown in Fig. B. Calculate the required bead length I

of th(' welds if P — 48,000 lb and the working stre.ss for the wxJd metal in shear is

r.. =-' 13,G(K) psi. Ans. I - 6.67 in.

8. A st(‘el bar of width b and thickness t is to be \v(3ld(*d to a gusset plate by means
of two side fillet wedds as shown in Fig. B. Using the same working stress in shear

for the w'cld miTal as in the Problem 7, calculate the bead length I of each fillet to

develop a working stress of (r„, = 1 6,000 psi for tension in the bar. / =• 0.8336.

9. A 5 in. X 3^ in. X i in. angle section is to be welded to a plate by side fillet

welds as shown in Fig. 3.17, The 5-in. log of the angle ii-on lies against the plate.

If 7^ ~ 50,000 Ib and acts along the centroidal axis of the angle section, what are

the required lengths h and I 2 of the beads? Ans. li — 9.42 in
;

I 2 — 4.43 in.

10 . If, in the pn'ceding problem, the weld bead at the ht^ol of the angle iron has a

Uin. leg dimension and that at the toe has a f-in. leg dimension, calculate the re-

(juired lengths h and I 2 of the tw^o welds. Ans. li = 7.06 in.; I 2 = 4.47 in.



CHAPTER IV

TORSION

4.1 Torsion of a Circular Shaft

CorMcier a circular shaft built Jii at the upper end and twisted by a couple

applied to the lower end (Fig 4.1a). ft (;au be shown by measurements at

the surface that circular sectioris <)f the sliaft remam circulaT durjrig twist,

and that their diameters and the distan(‘es between them do not change

provided the angle of twist is small.

AdisC'Iike element of the shaft, such as that adjacent to the section mn
;tnd shown as a free body in Fig. 4.1b, will be in the following state of strain

There will be a rotation of its bottom cross-section with reference to its top

through an angle d<t>. A thin element abed of the surface of the disc whose
sides were vertical before strain takes the form shown in Fig. 4.1b. The

lengths of the sides remain essentially the same and only the angles at the

comers change. Thus we may conclude that the element is in a state of

P'ure shear (see An. 3.4) and the magnitude of the she^aring strain, measured
by the angle cac'. is given very closely by

e’e

70
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Since c'c is the small arc of radius r subtended by the angle c'c

Thus

__ c'c _ r d4>

^ Ojc' dx

r d<t>.

(a)

For a shaft twisted by a torque at the end, the angle of twist 4> is projX)rtion-

al to the distance x of the cross-section from the fixed end and hence d4>/dx

is a constant. This constant represents the angle of twist per unit length of the

shaft and will be called 6, Then, from (a),

y = rO. (b)

The shearing stresses which act on the sides of the element and produce the

above shearing strain have the directions shown. The magnitude of each,

from eq. (3.7), is

T = Gy = Grd. (4.1)

So much for the state of stress on an element at the surface of the shaft.

As for the state of stress within the shaft, the assumption will now be

made that not only the circular boundaries of the cross-sections of the shaft

remain undistorted but also that the cro,ss-sections themselves remain plane

and rotate as if absolutely rigid
;
that is, every diameter of the cross-section

remains straight and rotates through the same angle. Tests of circular shafts

show that the theory developed on this assumption is in very good agree-

ment with experimental results. Such being the case, the discussion for the

element abed at the surface of the shaft (Fig. 4.1b) will hold also for a

similar element within the shaft, whose radius p replaces r (Fig. 4.1c). The
thickness of the element in the radial direction is considered as very small.

Such elements are then also in pure shear, and the shearing stress on their

side is

r = GpS. (4.2)

This states that the shearing stress varies directly as the distance p from

the axis of the shaft. Fig. 4.2 pictures this stress distribution in the plane of

Fig. 4.2 Fig. 4.3
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the cros.s-sectif)!! .'tnd ulso the (‘ornpIcrnoDtary shearing stresses in an axial

plane (see p. ‘JO). The inaxiinum stress occurs in the outer surface of the

shaft, where p --- r.

For a ductile niatei lal, plastic flow begins first in (his outer surface. For a

material which is weaker in shear longitudinally than transversely - for

ins(,an(‘(\ a wooden shaft with the fibers parallel to the axis - the first

('racks will be prodiaa^d by shearing stresses acting in 1 he axial sections and

flaw will appear on the surface; of the shaft in the longitudinal direction. In

the case of a inaterial which is weaker in tension than in shear ' for

instance, a circular shaft of cast iron or a cylindrical piece of chalk —a
crack along a helix inclined at 45° to the axis of the shaft often occurs

(Fi^r 'ITe explanation is simple. The state of pure shear is etpiivalent

to one of tension m one direction and ecpial compression in the perpendicu-

lar direction (see Art. 5.1) A rectangular element cut from the outer

layer of a twisted sliaft with sides at 45° to the axis will be subjected to such

stresses, as showm in lug. 4 5. The tensile stresses shown produce the heli(*al

crack mentioned.

The relationship betw'een the appli(‘d tonpie T and the stresses which it

produces will now be found From the e(|uilii>rium of that portion of the

shaft iHd.ween the ixittom and the section mn, it can be concludial that the

shearing sti*esses distributed over the cross-section 7nn are statically

opuivalent to a couple equal and opposite to the external torque T. iuir

each element of area dA (lug. l.lcj. the shearing force is rdA. The mo-
ment of thi.> force about the axis of the shaft is (rdA)p = Gdp^dA, from o(\

(4.2). The Tobil resisting tor(]ue T about the axis of the shaft is the summa-
tion, takim over the entire cross-sectional area, of these moments of th('

individual clement-’; that is,

7’ = I ^

oep- dA = ad p- dA = G0J. (()

where

is defined as the polar moment of inertia of the circular cross-section.* For a

circle of diameter d, J - 7rd‘*/32, so that

and

T =

r 52

G Td^'
(4.3)

Thus 0, the ; igle of twist per unit of length of the shaft, varies directly avS

th(' applied tonpic and inversely as the modulus of shear G and the fourth

Appendix H, p. 540.



CIRCULAR SHAFT 73

power of the diameter,

will be

If the shaft is of length /, the total angle of twist

</> = /?/
II
(fj

(4.4)

This equation is useful in the experimental verification of the theory, and is

checked by numerous experiments which justify the assumptions made in

its derivation. It should be noted that experiments in torsion are commonly

used for determining the modulus of materials in shear. If the angle of tw'ist

produced in a given shaft by a given torque be measured, the magnitude of

G can be easily calculated from e(i. (4.4).

Substituting d from ecj. (4. .4) in eq. (4.1), we obtain an eciuation for

calculating the maximum sh(‘aring stress in iwist of a solid circular shaft

Tr ibr~ “ mP
(4.5)

We see that this stress is proportional to the applied lonpie T and inversely

proportional to the cube of the diameter of the shaft.

If we substitute 6 from eep { in eip ( 1 2), w(' olitain an ex})ression for

th(’ shi^anng stri’ss r at niu/ point in a solid circular shaft;

r ~-
Tp

,1

(4.6)

In practical applications, the diameter of the shaft must soiinMirnes be

calculated from the horsepower wdiich it. is reipiired to transmit t li\ eii the

horsepower hp, the speed n in rpm, and the torque T in inch pounds, a

formula coimci'ting these quantities is derived as follows; Sin(*e the work

done by the applied tortpie 7’ piT revolution of the shaft is T Oir, the work

dune per minute at n rpm will be T 'IirrL Then with 1 Iqi = 35,000 ft-lb

per minute, we havi^

2TnT
12 X 33,000

or

,, 12 X 33,000 X hp 63,000 (hp)
. ,,

7 = — in.-lb (4.0
2Trn n

When the horsepower and rpm are given, t he corresponding torque T can

be computed from this formula and then used in any of the foregoing

equations to compute the shear stress or angle, of twisi in the shaft.

In this way it may Ix'. shfiwii that the required diameter d of a S'^did

circular shaft, to transmit hp liorsepower at n rpm with a maximum allo\v-

able working stress Tw i’u shear, will be

(d)
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Hollow Shaft. From the preceding discussion of torsion of a solid shaft of

circular cross-section, it is seen that only the material at the outer surface

of the shaft can be stressed ro the limit assigned as an allowable working

stress. All of the material within the shaft will work at a lower stress and is

not being used to full capacity. Thus in tUose cases where weight reduction

is important, it is advantageous to use hollow shafts. In discussing the

torsion of a hollow shaft, the same assumptions will be made as in the case

of a solid shaft. The general expression for shearing stress, eq. (4.2), will

apply. However, in calculating the internal resisting torque T in this case,

we sum the moments of the elemental forces rdA only over the region from

Pi = Jdt to po = as shown in Fig. 4.4. In this way, we again obtain, foi

the internal resisting torque,

T = Ge
I/ dA = GdJ,

where now
<

is the polar moment of inertia of the hollow' cross-section. Thus, with the

proper value of/, the basic equations (4.2), (4.4), and (4.6) apply also to a

circular shaft of hollow' cross-section.

Taking, for example, the case w’^here di = \do, the angle of twist </>, eq.

(4.4), and the maximiim shear stress Xmax, eq. (4.6), will be found to be about

6 per cent larger than in the case of a solid shaft having the same outside

diameter do. But the reduction in w'eight will be 25 per cent.

50 hp on

EXAMPLE 1 . The solid line shaft shown in Fig. 4.5 is made of steel, has diameter
d = 1 .5 in., and runs at 525 rpm. It is supported in bearings so placed that bendmg
of the shaft will be negligible. A driving belt feeds 50 hp to the left hand pulley

while 30 hp and 20 hp, respectively, are taken off by belts overrunning the middle
and right hand pulleys. Compute the maximum shear stress r induced in the shaft

and the total angle of twist <t>. Assume G = 12(10)® psi.



CIRCULAR SHAFT 75

SOLUTION. The greater torque is in the left-hand portion of the shaft. Its value

from eq. (4.7) is

T = 63,000 X ^ - 6000 in.-lb.
OaO

The corresponding maximuiri shear stress from eq. (4.5) is

r
16 X 6000

TT X (1.6)3
9060 psi.

Similarly, for the right-hand portion of the shaft which transmits 20 hp, T = 2400

in.-lb and r = 3620 psi.

The total angle of twist is the sum of the angles of twist and <^2 in the two
portions of the shaft. Using eq. (4.4), this becomes

=
<t>\ <t>2

6000 X 120 2400 X 240

12(1 0)« X 0.497 1200) » X 0.497
= 0.217 rad = 12®27'.

The value of J used in the above ealeiilation is

^ 3^(1.
»•- 0.497 i„..

}

'

' EXAMPLE 2, A stepped solid circular shaft is built-in at its ends and subjected

to an externally applied torque To at the should(;r as shown in Fig. 4.6. Determine

the angle of rotation of the shoulder section where To is applied.

SOLUTION, l^his is a statically indeterminate system because the shaft is built-in

at both ends. All that we can find from statics is that the sum of the two reactive

torques Ta and Tjt at the built-in ends of the shaft must be equal to the applied

torque To. Thus
T^4-Tb^ To. (f)

From consideration of consistent deformation, we see that the angle of twist in

each {xirtion of the shaft must be the same, i.e.,

(t>a = 4>b = 4>0- (g)

Using eq. ‘(4.4) for angle of twist, expression (g) becomes

Tacl _ Tsb
__

GJa " GJb
~ (h)

This defines the ratio between Ta and Tb as

Tb Jb(^
(i)

T
•^4 Ca

-M

X
Fig. 4.6
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From this expression, we see that in the particular case where J

a

~ J ih

for a shaft of uniform cross-section, the reactive t()r(|ues Ta and Th are simply in

the inverse ratio f^»f the lengths a and b. From cqs. (f) and (i;, we obtain, for the more
general case,

Ta =
To

T„ =

J B(i

(j)

Using either of these values in eejs. (Ii), we have for t]i(‘ angle of rotation 0i) of tin'

junction

Tpoh

{•fAb + J rt<i)(r

(k)

PROBLEMS

1 . The shaft of a "J'-socket wrench is J in. in diameter and 18 in. long. If the

allowable working stress in shear is r^. = 10,000 psi, what is the maximum twisting

moment that it is safe to exert with the wrench, ami through what angle will the

shaft twist under the a(‘tion of this torque^ ' A ns. Ty, = 215 in.-lb; <t>
= 3.44°.

2. A ste(‘l shaft of diamet(‘r d — 2 in. and hmgth I
— 20 in. is twisted in a testing

ma(4une until one end rotates through an angle 0 -- 0.6° with n'spind to the other

end. For this angle of twist, the m(‘asiired torque load is T — 9860 in.-lb. What is

the maximum shear stress r in tiu' shaft and wdiat is the valui' of the shc'ar modulus
G? Ans. T = 6280 psi; G = 12(10)« psi

3. A solid st(‘el shaft of diameter d = 3 in lias a working stress in shear, == 3000

psi and the allow abh' angle of twist ])(‘r foot of length is (’alculate the safe

hirque T that the shaft mav transmit. Ans Ty, - 11,600 in.-lb.

i. A steel shaft 1 in. in diameter turns at 10,000 rpiii. What U’ th(‘ maximum
powa^r that such a shaft ma\ develof) without exce(‘ding an assigned working stress

in shear of r„, = 4500 psh'’ .hes*. 0.274 hj).

5. Determine the proiK*r diam<‘t(*r d for a solid stet4 shaft to transmit 200 hp
at 105 rpni if the working stress m shear is 6000 psi. -h/,9. d ~ 4.67 in.

6. Determuu' tiu* propiT diarnetiT d for a solid steel shaft to transmit 300 hp
at a speed of 3()00 rpm if the w orking stress in shear is 7-„, — 6000 psi. Ari-s. d ~ 1.65

in.

7. A hollow' .<teel .shaft is to have outside diametcT d arul inside dianud-er d/2.

Calculate’ the pn^jier value of d for the shaft if it is to transmit 2(X) hp at 105 rpm
with a w'orking stri's^ in shear of 6000 psi. Jws. d = 4.78 in.

Gotc

house

^Geor

d, / d,

i 0 L_
T

4
GearN

5
'-

Fig. a

-4*-- 3
’

*1

3. Figure A represents a plan vimv of a sluice gate installation for liontrolling

water flow. To raise (*ach of the three vc'rtically sliding gates requires a force of
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20,000 lb to bo oxort/od by th(‘ corresponding; g;car (7.5-iii. pitch diameter) on a
vortical rack attached to each g;ote stem What are the n*(iuired diametfTS du d.*. rfa,

for the threo portions of the shaft if -= 12,000 psi‘^ Assum(> a steel shaft, G =
12(10)® psi. An^. rf, - 5.75 m., ~ 5.00 in., cU = 4.00 m.

9. For the s^^stem in Fig;. H, power is transmitted from the gear .1 to the gear D.

If the pitch dianieti'rs of the gears B and C are m tlu* ratio J 3, \\hat ls the proper

ratio of shaft diamc’ters diido for both shafts to hav(‘ th(‘ same maximum shear

stress r? .Ins. di.do = 0.093.

10. For the stepped shaft shown in Fig. 4.6, the following data are given:

(I
='- 30 in., b = 30 in., di =

1 .00 in., d-i
— 1.20 in., To = (>IK)0 in.-ll> ('aleulate the

maximum shear stress in the shaft and the angl(‘ through vvhieh tin' shoulder s(‘ction

will rotate. .Assume G = 12(10)® psi. .bKs\ r == 11,900 psi; ~ 2.85°.

11. A prismatic shaft with built-in ends is subjected to th(‘ action of externally

applied twisting moments Ti and T-. as shown in Fig. What are, the internal

torques Ta, Ti,, Tr, in th(' thrta* portions a, 5, c, of the sliaft? The following data

are given: a = 30 in., 5-50 in:, c = 40 in., 7b — 12,000 in. -lb, and To - 24,(K)0

in.-ll). Ins. T„ - 17.000 in.-lh; 7\ - 5000 in.-lb; T, = 19.000 in.-lb

Fig. C Fig. D

12.

A solid circular aluminum shaft of diameter d — 2 in. is twisted in a testing

rnar'hine as ^hown in Fig. 1). strain gag(* plac(‘d along a 45°-heli\ on thi‘ surface

of the shaft .shows a positi' c strain e = 955(10) b wluui T = 12,000 in.-lb. W^'hat

IS the shear modulus C for the iiiatenar* A ns. G ~ 4(10}® [)si

4.2 Close-(^oiled Helical Spring;

An interesting appliealion of the theory of torsion arises in t he ease of a

close-eoiled helical spring.* Assume that su(‘h a spring, wuiund from a wire

of solid circular cross-section on a eireiilar core, is subjected to the action of

axial forces P (Fig. 4.7a), and that any one coil li(\s nearly in a plane per-

pendicular to the axis of the helix. Considering the equilibrium of the upper

portion of the spring hounded by an axial section such as mn (Fig. 4.7b), it

can be concluded from equations of statics that the stress resultant on the

cross-section mn of the coil reduces to a shearing force P through the

center of the cross-section and a couple acting in a counterclockwise direc-

tion in the plane of the cross-section of magnitude PR, where R is the radius

of the cylindrical surface containing the center line of the spring. The

*For a complete treatise on springs, .sih* Mechanical Spnmjs by A, M Wahl, Penton
Publishing Co., Cleveland, 1944.
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couple PR twists the coil and causes a maximum shearing stress given by

eq. (4.5), which becomes here

(a)

where d is the diameter of the cross-section mn of the wire. Upon this stress

due to twist, that due to the shearing force P is superposed. For a rough

Ftg. 4.7

approximation, this shearing force is assumed to be uniformly distributed

over the cross-section ; the corresponding shearing stress will be

T
rr

IP
irfP

(b)

At the point m the directions of t and r" coincide so that the maximum
shearing stress occurs here and has the magnitude

= r + r =— (^1 +_
j

(4,8)

It can be seen that the second term in the. parentheses, which represents the

effect of the shearing force, increases with the ratio d/P. It becomes of

practical importance in heavy helical springs, such as are used on railway

cars. Due to this term, points such as m on the inner side of a coil are in a

less favorable condition than points such as n, for at point n the shearing

stresses t' and r'' act in opp>osite directions. Experience with heavy springs

shows that cracks usually start on the inner side of the coil
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There is another reason for expecting higher

stresses at the inner side of the coil. In calculating

the stresses due to twist, we use eq. (a), which was

derived for cylindrical bars. In reality each element

of the spring will be in the condition shown in Fig.

4.8. It is seen that if the cross-section hf rotates

with respect to oc, due to twist, the displacement of

the point b with respect to a will be the same as that

of the point / with respect lo c. Due to the fact that the distance ab is

smaller than the distance #/, the shearing strain at the inner side ab will be

larger than that at the outer side c/, and therefore the shearing stresses

produced by the couple PR will be larger at b than at /. Taking this into

consideration, together with the effect of the shearing force, we replace eq.

(4.8) by the following equation* for calculating the rnaximuin shearing

stress:

WPR
7r(P \4m ~ 44 m /

(4.9)

in which m = 2R/d. It can be seen that the correction factor in the paren-

theses increases with a decrease of m; for instance, in ease m == 4 this

factor is about 1.40 and for m = 10 it is equal to 1.14.

In calculating the deflection of the spring, usually only the effect of the

twist of the coils is taken into consideration. For the angle of twist of one

element between the two adjacent cross-sections mn and m'n' (Fig. 4.7c),

using eq. (4.4), in which Rda replaces i, we obtain

, . P ’ R ’ Rda
d4>

Due to this twist, the lower portion of the spring rotates with respect to the

point 0 (Fig. 4.7a), and the point of application B of the force P describes

the small arc Bfi' — a dip. This movement of B is easily pictured by

imagining all of the spring as rigid except the element between mn and

m'n'. The vertical component of this displacement is

dd B'B" = BB'- = Rd<l>^
a

PR} da

JG
(c)

The complete deflection of the spring is obtained by summation of the de-

flections B'B" due to each element mnm'n', over the length of the spring.

Then

, l^^PR}^ 64nPB»
(4 .10)

•For the derivation of this formula, see A. M. Wahl, "'Stresses in Heavy Closely Coiled

Helical Springs, “Trons. A.S.M.E,t 1929, VoL 61, Paper No. APM-61-17
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in which n denotes the number of coils. The net horizontal displacement in

one complete turn is zero.

The ratio jP/5 for a given spring is called the spring constant^ denoted by /c.

Thus, from e(\. (4.10), we have

P ^
5 MRhi (4 . 11 )

Two springs are said to be of the same stiffness if their spring constants arc

(•(jual. The spring constant k can be varied by changing the material, the

wire diameter, the core radius, or the number of coils.

hXAMPLK 1 . Two closo-coilcd helical springs wound from the same wdre but with

different core radii are assembled as shown in Fig. 4.9 and compressed between

rigid plates at their ends. C alculate the maximum shear stress induced in each

spring if the wire diameter d \ in. and P - 100 lb. 7'he (‘ore radii are a.s shown
in the figure.

SOLUTION, Sinc(‘ the two springs must have the same over-all shortening 5, it

follows from eq. (4.10) that the load F is divided between them in the inverse ratio

of the cubits of thidr core radii. Thus denoting by Fi the load carried by the outside

spring and by Fa that carried by the inside spring, we have

Also

Li -?L
Pi

~
64

Pi -f Po = F == 1001b.

From those two equations, we obtain P\ - 29.7 lb and Pa = 70.3 lb. Substituting

these values, together with the other given data, into eq. (4.9), the corresponding



HELICAL SPRING 81

iiiaxiniuin shear stresses in the two springs are found to be r 2860 psi and
T‘i - 5380 psi.

KXAMPLio 2. A e(jnical spring as shown in Fig. 4.10 is siiV)jeeted to a compressive
load F. Each coil is assumed to lie essentially in a horizontal plane and the sliape

of the s})iral in plan vie\A' is defined by the equation

ft = ft. + (d)
27rn

where R is the radius at any point .4 on the spiral and a is the angle measured as

shown. It is required to develop a formula for the spring <'onstant k,

SOLUTION, 'j'he conditions of an element of the spring at .1 of huigth Rd^x will he

the same as for the element in Fig. 4.7c. Hence, using eq. (c),

Substituting now the value of R from eq. (d), we obtain

, 32? P"’T„
,

(ft 2 -ft.)a|> Ififtrt=~
ird*G

,

rf« = ^(ft.^+ft./)(ft. + ftj),

where J has been replac’ed by TTr/"*/ 32. Thus the spring constant is

^ ^ ^ 0^
5 16n(/?> + /?.')(/?! + ^ 2 )

‘

PHOBLEMS

1. For th(' helical spring shown in Fig. A, the following data are given: P ^ 400

lb, R ~ 3 in., d —
-J

in., n ~ 12, and G = 12(10)® jisi. (-aleulab', the maximum
sliear stre.<=^s and the (‘xtension 5, Aris. Tm ~ 17,200 psi; 5 == 2.18 in.

2. If the limiting shear stress for the spring shown in Fig. A is Tm, = 20,000 psi,

what is the maximum safe load? Ans. Pm = 465 lb.

3. The h(‘lical spring shown in Fig. H has rii + 712 ~ n coils, is built-in at both

ends, and c.arries a load P applied to an intermediate plate. C’alculah^ the reactions

Ri and R 2 at the ends of the spring. A /is. R 1/R 2 = uzlriu Ri R 2 — P.

Fig. a Fig. B Fig. C
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4. Using formula (4.9), find the safe load P for the conical spring in Fig. 4.10 if

the working stress in shear is r,,. = 45,000 psi. The spring is wound from a 1-in.-

diameter steel rod with Ri — 2 in. and R 2 — S in. Ans. — 1010 lb.

5. A rigid bar AB weighing 20 lb and carrying a load P = 80 lb is supported by
three springs having spring constants A: 1 = 1(X) Ib/in., = 60 lb/ in., kz = '10 Ib/in,

(Fig. C). If the unloaded springs were all of the same length, find the distance x
such tliat AB will be horizontal. Ans. x = 7.5 in.

4.3 Strain Energy in Shear and Torsion

Consider, in Fig. 4.11, an element of elastic material in a state of pure

shear. The strain energy stored in such an element may be calculated in

the same way as for the case of simple tension (see Art. 2.4). During de-

formation of the element, the top face cd moves horizontally through the

distance ydy relative to the bottom face ah as the shear stress is gradually

i

^

'V

\

Fig 4.11 Fig. 4.12

increasing from zero to the final value r. Then the work done by the shear

force rd.<; dz (ui the top face is \Tdx dz • ydy. Since the shear forces cn the

sides ac and bd do no work, this represents the total strain energy stored in

the element. Dividing by the volume dx dy dz of the element, we obtain

^ = y fa)

for the strain energy per unit volume.

Noting that, within the elastic limit of the material, y = t/(j, expression

(a) may be written in either of the following two forms:

u = or w = (4.12)
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The first of these equations expresses the strain energy as a function of the

shear stress t; the second, as a function of the shear strain 7. The limit of

elastic strain energy per unit volume will be obtained by setting r in the

first equation equal to the elastic limit in shear.

Having expressions (4.12) for strain energy of shear per unit volume, the

total strain energy in a solid circular shaft of radius r and length I subjected

to twisting moments T at its ends (Fig. 4.12) can easily be found. Denoting
by Tmnx the maximum shear stress at the surface of the shaft, the shear

stress at any intermediate radius p will be Tmax(p/r). Then, from the first of

eqs. (4.12), the strain energy per unit volume at the radius p will be

u
Tmax^

2Gr2
(b)

The energy in the elemental tube of length Z, radius p, and thickness dp

will he
^ ^

(c)dU = udV = Z^-L.i.2rpd.p.

Summation of expression (c), from p = 0 to p = r, gives for the total strain

energy in the twisted shaft,

This is seen to be just half the value that would be obtained if all the

material were stressed to the maximum value r^ax. Noting that rn^x =
Tr/J, where ./ = TrrV2, expression (4.13) can be written also in the form

TH
U -~ (4.13')

This strain energy U for a shaft in torsion

may be obtained in another way by using ex-

pression (4.4) for the angle of twist in the shaft.

This shows that the relation between torque T
and angle of twist <t> is linear within the elastic

limit of the material as shown by the torque-

twist diagram OAB in Fig. 4.13. For any small

increment d<t> of the angle of twist, the work

done by the acting torque is represented by the

area of the shaded strip in this diagram. Thus

as the torque is gradually increased from zero

to any final value T, the total work, equal to the

energy stored, is represented by the area OAB

TT T* /-1 \
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where 4> = TlfGJj from eq. (4.4). With this relationship between T and

expression (d) may be written in either of the following two forms:

(4 . 14 )

The first of these equations expresses the strain energy in terms of the

torque T; the second, in terms of the angle of twist Expressions (4.14)

may be used either for a solid circular shaft with J = 7rd^/32 or for a hollow

circular shaft with J = T(do^ — d»^)/32.

If the internal torque varies along the length of a shaft as in the case of a

conical spring (Fig. 4.10), we consider one elemental disc of length dx and

under twisting moment Tx Then the angle of twist in this elemental disc is

where

d<l} = ^dx,
dx

d^ _
dx ~ GJ

(e)

(f)

is the angle of twist per unit thickness of the elemental disc. Substitution

of d<t) for 4> ‘^md dx for I in the second of eqs. (4.14), gives, for the strain

energy in the disc.

d[> -

Then a summation over tfie full length I of the shaft gives, for the total

strain energy

=
(4 . 15 )

KXAMPiiE 1. Determine the deflection 6 for the close-coileci helical spring in

Fig. 4.7a, by using the expression for strain energy of torsion.

SOLUTION. The twisting moment on each and every element of the coil like that

shown in Fig. 4.7c is PR. lienee, by the first of eqs. (4.14), the total strain energy
in the spring of length 2TrRn is

_ (P/2) 2. 2TrRn

2GJ

Equating this to the w^ork Fd/2 of tlie load P during deflection, we obtain

2TrnFR^ e>4nPR\
~ GJ ~ Gd*

which agrees with expression (4.10) on p. 79.

EXAMPLE 2. Verify expression (e) on p. 81, for the deflection 5 of the conical
spring loaded ns showm in Fig. 4.10, by using oq. (4.15) for strain energy of twist.

SOLUTION. At any point A on the coil (Fig. 4.10), the torque = P/2, where the
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radius R varies with a. according to eq. (d) on p. 81. Then from expression (f)

above, the angle of twist per unit length of coil at A is

PR

Substituting this into eq. (4.15), taking dx = R da and changing the limits of

integration accordingly, we obtain

Equating this to the work Pd/ J. of the load P, we. obtain

P"" PR\
~

Jo GJ

which agrees with eq. (e), p. 81.

KXAMPLK 3. A solid steel shaft with a flywheel at one end rotates at constant

speed n = 120 rj^m, Fig. 4.14. If the bearing A suddenly freezes, what maximum
shear stress Tnmx will be produced in the shaft due to dynamic effects? Assume
/ = 5 ft, d == 2 in., the weight of the flywhend \\ — 100 lb, and its radius of gyration

1 = 10 in.

ROLUi'ioN, l^he maximum shear stress in the shaft will occur when the total

kinetic energy of the flywheel has been absorbed by the shaft. This energy is

WW ^ 100 X 10^ X {AtY
2g 2 X 386

* 2050 in.-lb.

2^

Fig. 4.14

Setting tills equal to the strain energy U as given by eq. (4,13) and solving for

Tmax, we find

'Tmax
11.5(10)« X 2050

TT X 1 X 60
22,400 psi.

PROBLEMS

1. Two shafts of solid circular cross-section are identical except for their diam-

eters di and d 2 . Under the $aihe torque T, what will be the ratio of the amounts of

strain energy stored in each shaft? Am. U 1W 2 = {di/diY.

2. A solid circular shaft and a thin-walled circular tube made of the same material

and having the same weight are stressed in torsion to the same maximum shear

stress T. What is the ratio of the amounts of strain energv sUired in the two shafts?

Am. f/i/f/2 - i
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The conical spring shown in Fig. A is wound from a steel wire having diameter

d == 0.1 in. and has n = 10 coils. The plan view of the spring represents an Archi-

medean spiral for which R = oa, where a = 0.1 in. and a is an angle measured as

Fw. A Fig. F Fig. C

shown in Fig. 4.10. It the shear modulus G = 12('10)® psi, what is the value of the

spring constant k? Avs. k = 0.0302 lb /in.

4. A flywheel of weight W = 3S.6 lb and radius of gyration i = 10 in. is riKumtcd

at the middle of a solid steel shaft of diameter d = 2 in. and length I as <hown in

Fig. H. The shaft rotates in hearings A and B at an angular speed n = 120 rpiii.

If both bearings suddenly freeze so that the ends of the shaft become ifu ked, the

shaft will have to absoib the kinetic energy of the flywheel. Calculate the shortest

length / of tht‘ shaft for which this can be done without exceeding a maximum shear

stress Tu, = 12,000 jisi in the shaft, dris. /,nin = 7.00 ft.

5, A solid steel shaft of diameter d - { in, fits loosely inside a hollow steel shaft

of inside diameter d = ^ in. and outside diameter di — | in. as shown in Fig. C.

A pin .‘1.1 prevents relative rotation between the ends of the shafts at tin' left.

Pinholes at the right arc initially at right angles to each other as shown. Th(‘ two
shafts are now twist'd in opposite directions until the pinholes at B line up and a

pin BB IS then inserted. How much strain energy will be locked in th(' system if

I = 100 in.? Ans. U - 45.6 in.-lb.

4.4 TorHion of Thin-Walled Tubes

In the case of a hollow shaft of circular cross-section for which the inside

diameter is very nearly equal to the outside diameter, we speak of the shaft

as a thin^walled tube. For such a tube in torsion (Fig. 4.15), the polar

moment of inertia of the cross-section cannot be calculated with good

accuracy from the formula

and it is preferable to use the approximate expression

J = P^dA j^dA = 2irrH, (a)
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where r is the radius of the mean center line

and t is the wall thickness. Then assuming for

such a thin-walled tube that the shear stress r

is uniform across the wall and equal to the

value at the mean radius r as shown in Fig.

4.15b, we obtain from eq. (4.6)

T
2irrH

(b)
\

\

\

(b)

\

Likewise, from eq. (4.4), the angle of twist of

the tube becomes

Tl ^ Tl

GJ 2TrHa
(c)

\

\

Tn Art. )L4, it was shown that the -^tate of

pure shear such as exists on the element A in

Fig. 4.15a is equivalent to biaxial teuMon and

compression on an element oriented at 45° to

the axis of the tube, like the element B in Fig. 4.15a. From this, we see that

a long narrow strip of the wall coinciding with the 45°-helix shown in Fig.

4.15a is subjected to axial compression, and if the wall of the tube is very

thin, such a helical strip may buckle. This phenomenon can be demon-

strated by rolling a sheet of paper into a tube and then subjecting it to

torsion. Analysis of this problem* shows that for a long steel tube under

torsion, we should have the ratio t/r > %o to avoid the danger of buckling

at normal working stresses.

Introducing, in eqs. (b) and (c), the notations

Fig. 4.15

Ao = TTf^ = area enclosed by mean center line,

(d)

(e)

The above formulas can be used for calculating the shear stress and angl^

of twist in a thin-walled tube of arbitrary cross-section as shown in Fig.

*See L. H. Donnell, Stability of Thin-Walled Tubes under Torsion^ Nat Adv, Comm.
Aeronautics, Tech. Kept. 479, 1933.

8 = 2Tr = length of mean center line,

we obtain

T
2Ao/

and

^ _ TSl

~ 2AS
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4.16. When such a thin tube of noncirciilar cross-section is twisted, the

cross-sections rotate slightly, one with respect to another, but they do not

remain plane. After twist, each cross-section becomes slightly warped, and

if no restraint against this warping exists at the ends of the tube, it takes

place in such a way that the shear strain 7 of every element of the wall

such as A has the same magnitude regardless of the radial distanee p of that

element from the centroid of the cross-section. Thus the shear stress r,

proportional to the shear strain 7 ,
is uniform throughout the wall of the

tube.

To relate this shear stress r to the external torque T, we consider any
cross-section of the tube as shown in Fig. 4.16b. For an element ds of the

mean center line, the shear force is rids as shown, where t is the thickness of

the wall, assumed constant. The moment of this force about point 0 is

dT — rtds • r,

where r is the distance from 0 to the tangent to the mean center line.

Summing such elemental moments over the entire length s of the mean
center line, we obtain

T = H
j

rds.

We see that the quantity rds under the integral sign is just double the area

of the small shaded triangle of base length ds and altitude r in Fig. 4.16b.
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Thus the integral of this quantity over the full length « represents double

the area enelosed by the mean center line of the wall. Denoting this area

by A 0 ,
we have

from which

r = Tf . 2Ao,

T
T

^

2A,i
(4.1G)

which coincides with eq. (d) above.

To calculate the angle of twist 0 of the tube, we use the method of strain

energy as discussed in Art. 4.2. From the first of eqs. (4.12) the total strain

energy in the tube is

U = X sit,

where sit is the volume of material in the tube and t is the shear stress,

uniform tliroughout the volume. Equating this strain energy to the work

T<t>/2 of the applied torque during twist, we obtain

T0
T ~W

from which

^ Yg

Since T 2AotT from eq. (4.16), this becomes

0 = TSl

2AoC/
(4.17)

which agrees with eq. (e) above.

In practi(;ul problems we often eU(‘ountcr thin-walled tubular members

of other than circular cross-section and ecjs. (4.10) and (4.17) are very

useful in the analysis of their behavior under torsion. The following

examples will serve to illustrate several such problems.

EXAMPLE 1. Two thin-walled tubular members made of the same material have

the same length, the same wall thickness, and the same total weight and are sub-

jected to the same torque T. If their cross-sections are circular and square, respec-

r

1

1

1

1

1

1

1

1

1

1

1 i !1 1 1 t 1
“1

4;'

1

1

1

1

1

1

1

1

1

1

1

1

J

Fig. 4.17
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lively, as shown in Fig. 4.17, what are the ratios of their shear stresses r and of their

. angles of twist <^?

SOLUTION. From eq. (4.16), the ratio of shear stresses is

T

7‘ (0

where A'o and are the areas enclosed by the mean center lines of the same
length s (Fig. 4.17). For the circle A'o = sV4ir while for the square, A"o = sV16.

Substituting these values into eq. (f), w^e find

r' ^47r_ir
“ l6 ”

4
0.785.

From eq. (4.17), the ratio of angles of twdst is

<t>" r'M'o \4/
0.616.

Wc conclude from this that the circular cross-section represents a more efficient

use of the material.

EXAMPLE 2. A stainless steel tube having an

elliptical cross-section as shown in Fig. 4.18

is subjected to torsion. If the allowable stress

in shear is == 10,000 psi, what is the

corresponding allow^able angle of twist per

unit length of the tube? The following data

are given: G = 12(10)® psi, a = 3.00 in.,

b = 2.00 in., ^ = J in.

S01.UTION. From eq. (4.17), the angle of

twist per unit length of tube will be

0 _ Tg

T “ 2A^
The area enclosed by the mean center line is Ao = Tab = 67r sq in. The length s of

the mean center line may be calculated with good accuracy from the approximate

formula

\{a + h) Mab

which gives s = 15.86 in. Then the above expression for 6 becomes

10,000 X 15.86

2 X 6ir X 12(10)®
0.000350 radian/in.

PROBLEMS

1. A tubular aluminum shaft having a square cross-section with outside dimen-

sion a = 1 in. must safely carry a twisting moment T = 636 in.-lb. Calculate the

proper wall thickness t if the working stress is = 6000 psi. An«. t « 0.060 in.

2. For the aluminum tube described in the preceding problem, calculate the angle

of twist per unit length of tube under the applied torque T = 636 in.-lb. The shear

modulus G * 4(10)® psi. Atw. 6 « 0.00319 radian/in.

3. A thin-walled stainless steel tube has the rectangular cross-section shown in

Fig. A. How does the angle of twist per unit length of tube due to torsion vary
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with the ratio a « a/b if the total length of mean centerline 5 = 2 (a -f ft) and the

applied torque T remains constant? Ans. 0 varies as (1 4- cx)^/a^.

4.

The cross-section of a thin-walled steel tube has the form of an equilateral

triangle with mean center line s = 3n = 3 in. and wall thickness / = in. If

Tw — 8000 psi, what is the safe twisting moment T for the tube? Am. T — 433 in.-lb.

-T fr

Fig. a Fig. B

5.

A long thin-walled tube of circular cross-section has a conical taper, the

diameter of the mean center line at the small end being do and that at the large end
being 2do (Fig, B). The wall thickness is t, the length is L and the applied torque, T.

Calculate the angle of twist of one end of the taf)e with respect to the other.

Am. m
2TdoHG

6

.

What IS the ratio between the shear stress<'s rn and n near the two ends of the

conical tube in the above problem'^ 4ns. to/t/ = 4.

4.5 Shaft of Rectangular or Profile Section

The prolilem of twist of a shaft of rectangulai’ eross-

sectioii is complicated, due to the warping of cross-

scctioiis during twist. This warping can be shown
experimentally with a rectangular bar of rubber on

whose faces a system of small squares has been traced.

It is seen from Fig, 4.19* that during twist the lines

originally perpendicular to the axis of the bar become
curved. This indicates that the distortion of the small

squai-es, mentioned above, varies along the sides of this

cross-section, reaches a maximum value at the middle,

and disappears at the corners. We thiuefore expect that

the shearing stress will vary as this distortion: namely,

it is a maximum at the middle of the sides and zero at

the corners of the cross-section. Investigation of the

problem t indicates that the maximum shearing stn^ss

occairs at the middle of the longer sides of the rectangu-

lar cross-section and is given by the equation

- Jl“
ocbc^’

(4.18)

*This figure is reproduced from Bach’s Elastizital und FesUgkeit.

tThe complete solution is due to de Saint Venant, MHn des Savanis HrangerSj t. 14

(1855).
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in which b is the longer and c the shorter side of the rectangular cross-section

and a is a numerical factor depending upon the ratio b/c. Several values of

a are given in Table 4.1.

T he angle of twist per unit length in the case of a rectangular cross-section

is giveii by the eciuation

r
ffbc^G

(4 . 19 )

The values of the numerical factor are given in the third column of

Table 4.1.

Table 4.1 DATA FOR THE TWIST OF A
SHAFf OF RECTANGI:LAR CROSS-SECTION

b/c a

1.00 .208 .141

1.50 .231 .196

1.75 .239 .214

2.00 .246 .229

2.50 .258 .249

;eoo ,267 .263

4,00 .282 .281

(i.CK) .299 .299

8.00 .307 .307

lO.(K) .313 .313

oo .333 .333

It is seen that in the case of a very narrow rectangular cross-section, such

as that for a thin strip of sheet metal, a and P equal \ and the ec^uations for

the maximum shearing stress and the angle of twist per unit of length be-

come

:yj\
~

bc^’
(4.20)

3T
(4.21)

These equations are of practical importance because they can be used not

only for a narrow rectangle but also for approximate solutions in other cases

in which the width of the cross-section is small. For instance, in the case of

the cross-sections of unifcjrrn thickness showui in P'igs. 4.20a and b, the angle

of twist is obtained Irom eq. (4.21) by putting in this ciiuation for b the

developed length of the center line, namely, b = 0r in the case of the section

represented in Fig. 4.20a, and h = 2a ~ r in the case represented in Fig.

4.20b. The inaximum stress for the first of these two sections will be ob-

tained from eq. (4.20). For the angle section (Fig. 4.20b) the maximum
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stress is at the reentrant ofn-nor.* This luaximnrn stress is obtained by

multiplying the stn^ss given by eq. (4.20) by a stress eoneentration factor.

This factor has b(?en found to vary with the ratio of lillet radius r to thick-

ness c: values of this fact(»r are given in Table 4.2.

Table 4.2 STRESS CT)NCE\TRAT10N FAC14)R

Factor

2i

2i

2

IJ

r/r

1

6
1

4
I

i

roxAMPLK 1. Two thin-walled tubes of (‘ircular cross-section are identic.al e.xcept

that one is seamless and the other is split as shown in Fig. 4.21. If r is the radius

of the mean centiT line and t is the wall thickness, tind th(‘ ratio of th(‘ir angles of

twist 0 per unit length of tube when they are subjeehnl to the same torque T,

SOLUTION. For the seamless tube, we obtain from eejs. (4 10) and (4.17) of Art. 4.4,

Th T
""

2^?Gt

Using eq, (4.21) for the split tube when* b ~ 27rr and c - I, we obtain

e =-HL
* 2TrGt^

(h)

Thus
(c)

Taking, for example, t/r = 1/10, this gives 6^/62 ^ 1/300, i.e,, t}u- seamless tube

is 300 times as stiff in b>rsion as the eorresponding split tulx?.

EXAMPLK 2. For the structural angle s^'ction shown in Fig. 4.20b, tie* iollowiug

dimensions are given: n = 4 in., c — ^ in. A sU‘d bar having this cros.s-section is

4 ft long and is subjccUd to twisting moments T = 2500 iii,-lb at its ends. Compute*
the maximum shear stress r and the angle of twist between the two ends ol the

bar if the fillet radius r = J in.

*The above methods apply where the cross-sections of the structural shapes are free

to warp.
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SOLUTION. Taking 6 == 2a — c = 7.5 in. in eq. (4.20),

3 X 2o00

Then with r/c = \ 1 the stress concentration factor is 2 from Table ‘ 4.2

above and the maximum shear strtvss at the reentrant corner becomes r = 2 X 4000
= 8000 psi

The total angle of twist from eq. (4.21) becomes

0 = 0/

3 X 2500 X 48

7.5 X ihV'^ X 12(10)<'
0.032 radian.

PROBLEMS

1,

Calculate the ratio between the maximum shear stresses ri and T 2 induced in

the seamless and split tubes, respectively, in Fig. 4.21. Aiis. tj/t 2

2. An aluminum channel lias the cross-section

shown in Fig. A. The fillet radius at the two
reentrant corners is J in. Calculate the safe

twisting moment T for the channel if the working
stress in shear is = 8000 psi. Ans. T 5000
in.-lb.

3. Calculate the angle of twist 0 per unit

length of the channel in Fig. A under torque

T = 5000 in.-lb if C = 4(10)® psi. Ans.d = 0.002

rad/ in.

4. A steel bar having a 1 in. X i in. rectangular (Toss-section is subjected to

twisting moments T = 200 in.-lb applied to its ends. Compute the maximum
shear stress. Ans.Tmax = 11,350 psi.

5. If the bar described in the preceding problem is 10 ft long, w'hat is the angle

of twist 0 between its two ends under the action of the torque T = 200 in.-lb?

Assume G ~ 11.5(10)® psi. Ans. 0 0.475 rad.

1/2 —

3
;

1 :

1
V2

1

1/2

' f
;

3"

: 1

t

. 10': 1

Fig. a



CHAPTER \

STRESSES IN BEAMS: I

5.1 Shearing Force and Bending Moment

A structural member that is reasonably long compared with its lateral

dimensions when suitably supported, and subjected to transverse forces so

applied as to induce bending of the member in an axial plane, is called a

beam. Several examples are shown in Fig.

5.1. The beam in Fig. 5.1a, supported by

a pin a t A and a roller at B is called a simple

beam. The one in Fig. o.lb, built into a

wall at B and free at A, is called a cantilever

beam. Since, in both of these eases, the

conditions of support are such that the re-

actions can be found from eciuations of

statics, these beams are said to be statically

determinate

.

On the other hand, the beam
in Fig. 5.1c, supported by a pin at A and

rollers at both C and Z?, is statically inde-

terminatCj since the reactions cannot be

found from equations of statics alone. For

the present, we confine our attention to statically determinate beams.*

Consider now a cantilever beam AB subjected to external loads and P2

as shown in Fig. 5.2a. If we imagine this beam to be cut by a section mn,

we see that the applied forces tend to displace the left-hand portion of the

beam relative to the right-hand portion, which is anchored in the wall.

This tendency is resisted by internal forces between the two parts of the

beam. Thus if we isolate that portion of the beam to the left of the section

mn as a free body, we represent the action of the built-in portion theron b>

distributed forces as shown in Fig. 5.2b. The true distribution of these

internal forces on the section mn is complicated, but to maintain equilib-

rium of the free body, they must be statically equivalent to the equilibrant

*Method8 of dealing with statically indeterminate beams will be discussed in Chapter
IX.

(a)

ZEITIIL

(b)

J e.-

(c)

Fro. 5.1

95
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of the applied extenial forces P^ and P-i. This stress resultant on the section

mn can always he represented by a force applied at the centroid of the

cross-section and a conple, both in the axial plane of the applied loads.

Furthermore, the force can, in turn, be resolved into rectangular com-

ponents iVi, normal to the plane of the section, and W, lying in the plane of

the section. Thus, in Fig. 5.2(^ we represent the stress resultant on any

Fig. 5.2

MV‘lion mn by the three quantities Nxj Vxy and M*, called, respectively, the

normal force, the shear force, and the bending moment, at that section.

These (luantities will lie considered positive when they have the directions

shown in Fig. o.‘Jc. vSuch Mgn conventions, although arbitrary, must be

carefully obs(>rv^ed to avoid confusion.

To pursue this question further, let us consider an element of the beam
between two adjacent cros.s-sections as shown in Fig. 5.Ba. Then normal

forces N, shear forces V, and bending moments M on the two faces of this

element will be considered as positive when directed as shown. We see that

a positive normal force is directed away from that face of the free body on

which it acts. Vlso a positive shear force is one that has a clockwise sense of

rotaLion about a point inside the free body. Finally the bending moments
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M are positive when they tend to bend the element concave upwards.

Negative directions of A", F, and M are shown in Fig. 5,:ih

Using the three equations of equilibrium

SX. = 0, = SA/. = () (a)

for the free body in Fig. o.2(*, the normal force A"x, the shear force Fx, and
the bending moment Mx at any cross-section mn can readily be calculated.

Using the centroid of the section mn as a moment center, these equations

give

Nx = Pi sin a,
]

Vx = P2 - Pi cos a,
[

(b)

Mr = P2 (.r — a) ~ Pi (‘OS a x.
j

These expressions, of course, hold only for a < x < L For 0 < x < a, we
consider the equilibrium conditions of that portion of the beam to the left of

a section pq (Fig. 5.2a) and obtain

Nx = Pi sin «,

Fx = —Pi cos a, ^ (c)

Mx — —Pi cos a • X.
)

It should be noted from expressions (l>) and (c) that, in general, AT^, 1%, and

Mx vary with the distance .r defining the location of the cross-section at

which they occur.

w lb per unit length

(0) (b) (c)

Fig. 5.3 Fig. 5.4
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As another example, consider the simple beam AB carrying a uniformly

distributed transverse load of intensity w as shown in Fig. 5.4a. Con-

sidering the entire beam as a free body the reactions at A and B are found to

be wl/2 each, as shown.

Then to evaluate the shearing force and bending moment at a chosen

section mn, we consider the equilibrium of that portion of the beam to the

left of this section (Fig. 5.4b). Acting on this free body, we have the re-

action v)l/2 at A and that part of the distributed load between A and the

section mn. The resultant of this portion of the distributed load will be a

vertical force wx ac'ting at the distance x/2 from A as shown. On the face of

the section boundary, we have a .shear force \\ and a bending moment Mx,

but in this case, since none of the (external forces has any horizontal com-

ponent, there will be no normal force Nx. Now using e(^s. (a), we obtain

wx.

, , xol wx* I

= T''
~ T' ''

(d)

If we consider the e((uilibrium of that portion of the beam to the right of

the section ma(Fig. 5.4c), we obtain

.. . wl \

1 w{l - x) - y, I

= ^(/ - ,r) - ^(/ - x)- !

(e)

These expressions can readily be reduced to coincide with expressions (d)

above. Since the entire beam is in equilibrium, we must otitain the same

values for shear forr-e and bending moment at a chosen section, by using the

equilibrium conditions for either portion of the beam.

A significant relationship between shearing force and bending moment at

any cross-section of a transversely loaded beam will now be shown. In

Fig. 5.5a, consider an element of the beam cut out by t'wo adjacent cross-

sections mn and pq, distance dx apart. On the left-hand face of this element,

we represent the shear force and })euding moment by Vx and Mx (assumed

positive). Then if no external load is applied between the cross-sections mn
and pq, the shear force and bending moment on the right-hand face of the

element will be Vx and Mx + dMx as shown, where dMx is the change in

fiending moment between mn and pq. Since the element is in equilibrium,

the algebraic sum of moments of these forces about point 0 must be zero

and we find

— Mx 4" {M

X

“b dMx) — Vj/dx = 0,



BENDING MOMENT 99

from which = Vx (5.1)
ax

Thus at any cross-section of the beam between points of application of

concentrated loads, the rate of change of bending moment with respect to x

is equal to the shear force.

Fio. 5.5

If there is some distributed load of intensity xc between mn and pq^ the

free-body diagram of the element will be as shown in Fig. 5.5b. Here again,

we equate to zero the algebraic vsum of moments of all forces with respect

to point 0 and obtain

-Mx + {M, + dMr) - V.dx + wdx = 0.

Neglecting the last term as a small quantity of second order in this ex-

pression, it reduces to

dMx — Vx dx = 0,

which yields the same relationship (5.1) obtained above.

Equating to zero the algebraic sum of vertical forces on the element in

Fig. 5.5b, we find

V, - (Fx 4 dFx) -wdx^ 0,

dV
from which = — w;. (5.2)

dx r

Thus when there is distributed load of intensity a; between the cross-

sections mn and pg, the shear force also changes along the beam and its rate
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of change with respect to .r is equal to the intensity of load but with opposite

sign.

If there is a concentrated load P on the beam between the cross-sections

mn and pq, the free-body diagram of the element will be as shown in

Fig. 5.5c. In this case, we denote the shear force on the left-hand face of the

element by Fx and that on the right-hand face, by F'*. Then equating to

zero the algebraic sum of vertical forces on the element, we obtain

F'x = Fx - P.

Thus in this case there is an abrupt change in the shear force over the length

cix. Accordingly, it may be concluded from eq. (5.1) that there will be a

corresponding discontinuity in the derivative dMJdx at the point of

application of a concentrated load P on the beam.

EXAMPLE 1. A simple beam AB carries a triangular distribution of transv^erse

load as shown in Fig. 5.6, .the maximum intensity of load at B being wo. At what
cross-section (defined by x) does the maximum bending moment occur and what is

its magnitude?

SOLUTION. The resultant load on the beam is wqI/2 acting at a point C distance

1/3 to the left of B. Thus, by XM « = 0, for the entire b(‘am as a free body,

RJ ~ (wol/2)(l/3) = 0,

from which Ra -tt'
()

The free-body diagram for a portion of the beam to the left of a section mn is shown
in Fig. o.bb. The resultant of that part of the distributed load which acts on this

free body is woX^/2l applied at point D, distance x/3 to the left of the section mn.
Positive shear force F^ and bending moment A/x act on the section boundary as

shown. From the equilibrium conditions for this free body, we find

Fx

MX

U’o/ WoX^ )

1 zT’ I

wolx Wot’

I
(f)

Fro. 5.6
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It will be noted that these expressions satisfy the relationship expressed by eq.

(5.1); i.e.,

dMj: _ wd ivcx'^ _
~d7 ~ T ~

21
''

Setting this expression for dMr/djr — 0, we find

(r)

defining the location of that section for w'hich has its maximum value. Finally,

substituting this value of j: into the second of eqs. (f), we obtain

(h)

EXAMPLE 2. Two horizontal beams AC and BC are connecUHl by a hinge C and

rest on three supports at points D, E, F, as shown in Fig. 5.7a. Both beams carry

uniformly distributed load of intensity w = 1000 lb p(‘r ft. Calculatf' the reactions

Rd, Re, Rf, and evaluate the maximum positive bending moment induced in the

beam AC.
SOLUTION. Considering CB as a fre(‘ body (Fig. 5.7b) and using the equilibrium

equations XMc = 0 and 21% = 0, we find Rf = 8333 lb and Rc = 1667 lb. Con-

•^ = 1000 lb per ft

(c) (b)

Fig. 5.7

sidering -4C as a free body (Fig. 5.7c) and using the equilibrium equations ZMd = 0

and SF, = 0, we find Re = 8333 lb and Rd - 7333 lb.

The shear force at any section mn between E and D at the distance x from A is

dMr
V X

— —wx + Rs = —lOOOx 4- 8333 = —i

—
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Settinj^ tliis expression equal to zero, we nonelude that Mr has a maximum value

at X - S.;i3 ft. In this ro^rion

Mr = Re (X - 4) -

vSubstitutinp; herein x = S.33 ft, Ri = s333 lb, and w = 1000 lb per foot, we obtain

- 1390 ft-lb.

PHOBLKMS

For th(' sinipl<‘ beam m A, evaluate the shear force and bending moment

at a section just to the left of the point of application of the 4000-lb load. Arts.

r = 1025 lb; M = 27,750 ft-lb .

1

4000 lb

T;
I

! ! ri
^

B

I

6-

Fig. a

Sfl Calculate the bending moments at cross-sections C and D of the beam shown

in Fig. B. A ns. Mr = 0; Md - -15,000 ft-lb.

1200 16/n

i
jgi

,

fi*— -5'—"— 5'--'— 5'

w per ft

TTTmrni

—v/-

p

Fig. B Fig. C

3. A simply supported beam with overhanging ends carries transverse loads as

shown in Fig. C. If wl = P, what is the ratio a/l for which the bending moment

Mr at the middle of the beam will be zero? A?i^. a/l - i.

4. A simply supported beam carries a linearly varying transverse loading as

sliovvn in Fig, D. The maximum intensity is Wo at each end of the beam. Calculate

the maximum positive bending moment. Ans. 3/max = 0.016 wol^.

TrnTrT>^
4C

i-

Fig. D

5.

A simple beam carries a linearly varying transverse loading as shown in Fig. E.

Calculate the maximum positive bending moment. Ans. 3/max = Wol^/SQyjS.

X
Fig. E
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6. Derive general expressions for normal force A",, shear force and bending

moment at the cross-section mn of the beam shown in Fig. F. .4ns. Nj = -|-F;

V, = -0.2P; M, = -0.2Pt.

I—

C
r
2 '

.

4^.

-4-- A

30C

500 lb ft

lO lb

000 Id ft
1

ijj ! ii : in:i 1 n 1 1 ! ! ! T
r

L. . _ J

Fig. F Fig. G

T, Calculate the sliear force V/f and the bending moment M

a

at the section just

to the left of the wall at P, for the cantilever beam in Fig. G. .4ns. T/# - —8200 lb;

Mb = -30,400 ft-lb.

^ The simple beam .4P in Fig. H carries a varying transverse load the intensity

of which at any point x is defined by the expression Wx — Wu sin tx/I, where Wo is

the maximum intensity at the center of the beam. Evaluate the maximum bending

moment in the beam. Ans, ~ icoP/tt*.

9. For the beam supported and loaded as shown in Fig. I, calculate the shear

force Vj) and the bending moment M

n

at the cross-section D. Ans, Vd - —250 lb:

Md = -f 500 ft-lb.

1000 !b

1000 lb rT 1000 lb

1

nil 1 1

1

10 '

1
1

nTTnrr

y i U— 2'

1

•
1

1

1000 lb

Fig. I

5.2 Shear and Bending Moment Diagrams

We have seen in the preceding article that the shear force F* and bending

moment Mx in a transversely loaded beam will, in general, vary with the

distance x defining the location of the cross-section on which they occur.

For this reason, it is often advantageous to use a graphical representation of
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the variation of these quantities along the axis of the beam. To do this, we

let the abscissa indicate the position of the section, and the ordinate the

corresponding value of shear force or bending moment. Such graphical

representations are called shearing force and bending moment diagrams.

P

Fig. 5.8

To illu.strate. let us consider as an example the case of a simple beam A B
carrying a .single concentrated transverse load P (Fig. 5.8a). From equilib-

rium corisid^^ratioris of the entire beam, the reaction.s are found to be

Ra T
Pa
I

Then for any cro.s.s-section mn to the left of P, i.e., for 0 < jt < a, it can be

concluded from the equilibrium of that portion of the beam between A and

mn that

Vx = H

—

j-j Mx = H— (a-)

From these expressions, we see that the shear force is constant between A
and the point of application of the load P, while the bending moment
varies linearly with x. For x = 0, the bending moment is zero and for

X = a it is Pabll. The corresponding diagrams are shown by the straight

lines ac and a'c/ in Figs. 5.8b and c.
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For a cross-section pq to the right of the load P, i.e., for a < x < U we
obtain in the same way

Pb ^ P(h - 1} Pa
]v, = T-P =— =-T’

' i (b)

M. = - P{x -a)= +Pa^l - ^ j

Thus again, the shear force is constant but of negative sign, while the

bending moment varies linearly with x. At x = I, its value is zero while at

X = a, it becomes Pah /I. The corresponding diagrams of shear force and
bending moment for this part of the beam are shown by the straight

lines cb and c'b' in Figs. 5.8b and c.

Viewing the (‘(uuplete diagrams of shear force and bending moment, we
see that the point of appli(‘ation of the load P there is an abrupt change in

the shear force from ~{-Pb/l to —Pafl. Correspondingly, there is a sharp

discontinuity in the slope of the bending moment curve a'c'b'.

If several transverse forces act on a simple beam as shown in Fig. o.Ua,

the same reasoning as above shows tliat between transverse loads, the shear

force remains constant and the bending moment varies linearly. Thus the

siiear force* diagram will have the general torm shown in Fig. 5,9b, whil(» the
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bending moment diagram will be of the form shown in Fig. 5.9e. It should

be noted that corresponding to ea(;h abrupt change in the magnitude of

shear force there is a discontinuity in the slope dMxJdx of the bending

moment diagram.

The actual construction of the diagrams in Fig. 5.9, for given numerical

values of the loads Pi, P2, P3 and distances between their points of applica-

tion, is quite simple. First the reactions Ri and R2 will be calculated. Then
on (‘omputing values of shear force and bending moment at only three

cross-sections— say just to the left of each applied load — the diagrams

can be constructed simply by connecting these key points by straight lines

as shown, l^'inally it should be noted that the maximum ordinate of the

bending moment diagram (under the load P2) occurs at that section where

the shear force changes sign, since here also the sign of dMjdx changes ac-

cordingly. If, going along the x-axis, the shear force changes from a

positive to a negative value at a certain cross-section (as in Fig. 5.9b),

we have a maximum bending moment at this section. A change in the

shear force from a negative to a positive value, conversely, will indicate a

minimum bending moment. In general, several changes in sign of shear

force may occ\ir along the length of the beam. If so, there will be several

maxima or minima in the bending moment and each one must be in-

vestigated to ascertain the numerically largest bending moment in the

beam.

Let us consider now a simple beam AB carrying a uniform distribution of

transverse load of intensity w as shown in Fig. 5.10a. In this case the re-

actions are each equal to wl/2. Then at any section distance x from the

left end A
,
we have

Vx

M.

wl-- w,
.

wlx wx^
2 T

(c)

(see eqs. (d), p. 98). From the first of these expressions, we see that the

shear force Vx has the positive value wl/2 at x = 0 and the negative value

— wl/2 at X = 1; furthermore, Vx varies linearly with x. Hence we may
construct the shear force diagram in Fig. 5.10b simply by drawing the

straight line ab as shown.

From the second of expressions (c), we see that the bending moment Mx
varies quadratically with x so that the corresponding curve is a parabola.

Its ordinate is zero for x = 0 and also for x = 1. It has its maximum
ordinate at x — 1/2, which is Mmax = wP/S. Thus drawing a parabola

through the points a', c\ in Fig. 5.10c, we obtain the complete bending

moment diagram as shown. Again, it will be noted that the maximum
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w per unit length

(C)

Fig. 5.10

bending moment occurs at the section for which Vx — dMz/dx ^ 0, in

accordance with eq. (5.1).

In Fig. 5.11a, we consider the case of a cantilever beam carrying a

uniformly distributed load between A and C as shown. Following the sign

conventions of Fig. 5.3, we see that in this case both the shear force and the

bending moment are negative throughout the beam. Specifically, for a

section mn betw^een A and C,

From the first of expressions (d), we construct the straight line ac in Fig.

5.11b and from the first of expressions (e), the straight line ch. This

completes the shear force diagram as shown. From the second of expres-

sions (d), we construct the parabola aV in Fig. 5.11c and from the second

of expressions (e), the straight line c'5'. This completes the bending mo-
ment diagram as shown. Since there is no abrupt change in the shear force

at section C, there is correspondingly no discontinuity in slope dMjdx of

the bending moment curve at this section. Thus in PTg. 5,11c, the straight

line c'6' is tangent to the parabola a'c' at c\
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Fiii. 5.11

Wo noto in Fig. 5.11c, that the numerically largest bending moment
Mu — — occurs at the built-in end of the beam, but that there

appears to be no corresponding change of sign in the shear force at this

section. To clarify this situation, we must consider that portion of the

beam which is encased in the wall (see Fig. 5.12). Assuming that the beam
bears on the wall only at points B and D, we will have reactions

Rb =
V)l

”2 ~r “jT"— and Ru
oa

3wl\

8a
(f)

directed aii shown in Fig. 5.12a. Then for any cross-section mn between D
and we have

\ X
— '\-Rd = +

3ieP
^

8a

Mx ^ —RijX^ —
Sa

(g)

where x is measured to the left from D, as shown. From these expressions,

we may now construct diagrams showing shear force and bending moment
variation along the encased portion BD of the beam (Figs. 5.12b and c).

These diagrams show^ that there is a change in the sign of the shear force

from negative to positive at B which confirms the condition of a minimum,
i.e., a negative maximum of M* at B.
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It will be shown in the next article that we may expect the highest

bending stresses in a beam at the section where the bending moment is

numerically a maximum; therefore, the location of such sections is of

practical importance. They are most easily identified by a change in sign of

(c) (c)

F»ci. 5.12 Fig. 5.13

the shear force which can he easily detected from a study of the shear force

diagram. However, there are many other useful and significant applications

of both shear force and bending moment diagrams, as will be seen later.

EXAMPLK 1. Construct shear force and bending moment diagrams for the

cantilever beam loaded as shown in Fig. 5.13a.

SOLUTION. In the region 0 < a; < a, we have

y, = -P; M. = -Px. (h)

In the region a < x < I, we have

F.= -P+P = 0,

M, = -Px + P(x - a) = -Pa.j

The corresponding diagrams are shown in Figs. 5.13b and c.

EXAMPLE 2. Construct shear force and bending moment diagrams for the simple

supported beam with overhang, loaded as shown in Fig. 5.14a.

SOLUTION. The reactions are

Ra = 0, Rb ^ wi

Between A and C, we have

y. -0. ii/, -0, (j)
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where x is measured to the right from A .

Between C and B, we have

= -wx, Mx = — (k)

where x is measured to the right from C.

lietween B and D, we have

F. = - xy = -^(1
- X^' (1)

where x is measured to the right from B. I'he corresponding shear and moment
diagrams are showm in Figs. 5.14b and c.

EXAMPLE 3. Construct shear force and bending moment diagrams for the simply

supported beam with overhanging ends loaded as shown in Fig. 5.15a.

SOLUTION. From equilibrium of the entire beam, w^e find Ri = = P(1 + 2a/l)

directed as shown. The shear force in each overhang is constant and equal to — P.

The shear force in the middle portion is constant and equal to —P + P(1 + 2a/L)

= +2Pa//. The corresponding shear force diagram is shown in Fig. 5.1 5h.

*y'/unit length

P P^

o-

•
I (o)

ZPa
I I

I I

(b)

lEs.
X

c\Pa

bPa (c)

Fig. 5.15

Since the beam is subjected only to concentrated forces, the bending moment
must vary linearly between points of application of transverse loads. The bending

moment over the left support is —Pa, while that over the right support is +Pa.
Plotting these points in Fig. 5.15c and drawing the straight lines a5, bcy and cd, we
obtain the complete bending moment diagram for the beam as shown.
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PROBLEMS

1. Construct, to scale, the complete shear force and bending moment diagrams
for the beam in Fig. A, p. 102.

2. For the beam in Fig. C, p. 102, the following numerical data are given: P - 50

lb, te “ 200 Ib/ft, / = 10 ft, a = 3 ft. Construct shear force and bending moment
diagrams to scale.

3. Construct general shear force and bending moment diagrams for the simple

beam loaded as shown in Fig. D, p. 102.

4. Construct general shear force and bending moment diagrams for the simple

beam loaded as shown in Fig. E, p. 102.

5. Construct to scale, the complete shear force and bending moment diagrams
for the cantilever beam loaded as chown in Fig. G, p. 103.

6. Construct, to scale, the complete shear force and bending moment diagrams
for the beam in Fig. I, p. 103,

24.000 lb

B

Fig. B

7. The beam shown in Fig. A carries a total distributed load W = 24,000 lb,

between D and E and is supported by a uniformly distributed reaction between A
and B. Construct shear force and bending moment diagrams to scale.

8. The shear force diagram for a simple beam supported at its ends is shown in

Fig. B. Construct the loading and bending moment diagrams.

5.3 Bending Stresses in Beams

Let us consider the beam AB transversely loaded as shown in Fig. 5.16

together with its shear force and bending moment diagrams. We note that

the middle portion CD of the beam is free from shear force and that its

bending moment Mx = Pa is uniform between C and Z>. This condition is

called pure bending.

To investigate the state oi internal stress produced by pure bending, we
must examine the deformation which takes place within the material. In so

doing, we shall assume that the beam is prismatic and that it has an axial

plane of symmetry which we take as the xy-plane." W’^hen the applied loads

also act in such a plane of symmetry, bending will take place only in that

plane. We assume further that the material is homogeneous and that it

obeys^ Hooke’s law, the modulus of elasticity in tension being the same as

that in compression. Then since the bending moment is uniform between C
and Dj it is reasonable to assume that the bending deformation will also be

LUuuuLiLiuLiLiLiLi. 1 f

L

n n
, -

1
J11111111111uLIij11Ll11
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p p uniform; i.e., the portion CD of the

beam will take the form of a circular

arc as shown in Fig. 5.17. In this de-

formed configuration, each cross-

section, originally plane, is assumed

to remain plane and normal to the

longitudinal fibers of the beam.*

As a result of the deformation

shown in Fig. 5.17, fibers on the con-

vex side of the beam are elongated

slightly while those on the concave

side are shortened slightly. Some-

where in between the top and bot-

tom of the beam, there is a layer of

fibers which remain unchanged in

length. This is called the neutral

surface. The intersection of this

neutral surface with the axial plane of symmetry is called the neutral axis

of the beam. Its intersection with the plane of any cross-section is called

lh(* neutral axis of that section. After deformation, the planes of two adjacent

cross-sections inn and jpq intersect at 0. We denote the angle between these

planes by dd and note that dd = dx/p where 1/p is the curvature of the

iKMitral axis of the beam.

In Fig. 5.17, we now draw through point b on the neutral axis, a line p'q'

parallel to mn and indicating the original orientation of the cross-section pq

0

•Careful strain measurements in the laboratory confirm this assumption for the case

of pure bending.
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before bending. From this construction, we see that the segment cd of any

fiber at the distance ij from the neutral surface elongates by the amount
(I'd = yds. Since its original length was cd' = dx, the corresponding

strain is

ydB . .= -^ = n/p (a)

If a fiber on the concave side of the neutral surface is considered, the

distance /y will be negative and the strain is also negative. ITius all fibers

on the convex side of the neutral surface are in tension while those on the

concave side are in compression. Experiments indicate that the lateral

deformation of fibers is tlie same as in simple tension and compression.

Thus the stress in each fiber will be proportional to its longitudinal strain,

E ^ (5.3)

Thi.s shows that the fiber str(‘sses ax due to pun* bending vary linearly with

distance .7 from the neutral surface, so long as the material follows Hooke’s

law. Such stress distribution over the depth of the beam is shown in Fig.

5.18. The position of the neutral axes Oz of tlu*. cross-se(‘tion may nt)w be

found from the condition that these stresses distributed ovr*r the section

must give rise to a resisting eouple M.

Let dA denote an element of area of the cross-section at the distance y

from the neutral axis (Fig. 5.18). Then the eleiVieiit ol force on this area

is axdA, Using eq. (5.3), this becomes

cr.dA =-ydA.
P

Now since there must be no resultant normal fonje Nx on the section (puic
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bending), the integral of over the entire area of the section must

vanish, i.e.,

-fp Ja y dA =0. (c)

Since E/p ^ 0, we conclude from this that

L y dA = Aye = 0, (d)

where A is the total cross-sectional area and yc is the distance from the

neutral axis to its centroid. Finally, since A 0, we conclude that Vc — 0.

Thus tke neutral axis of the cross-section passes through its centroid.

The moment of the elemental force (XxdA about the neutral axis of the

section is dM = ya^dA. The sum of these elemental moments over the

total area of the section must produce the bending moment M on that

section. Thus

M
I
ya.dA = -

/
i/dA.

J A P J A
(e)

The integral in this expression in which a summation is made of each ele-

ment of area dA* multiplied by the square of its distance from the neutral

axis (2-axis), is called the moment of inertia of the cross-sectional area with

respect to that axis.* Introducing the tiotation

(f)

for this quantity, cq. (e) may be written in the form

I ^ K
p El

(5.4)

This shows us that the curvature l/p of the axis of the beam is proportional

to the bending moment M and inversely proportional to the quantity E/,

called the flexural rigidity of the beam. We see that this flexural rigidity

reflects both the stiffness of the material as measured by E and the pr(‘por-

tions of the cross-sectional area as measured by 7.

Substituting the value of 1/p from eq. (5.4) into eq. (5.3) above, we obtain

O-x

My
I

(5.5)

It is seen that this bending stress will be a maximum in those fibers furthest

removed from the neutral surface, tension on the convex lower face of the

beam and compression on the concave upper face. Denoting the distances

•See Appendix B, p. 351.
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to extreme fibers in tension and compression, respectively, by ci and as

shown in Fig. 5.18, we obtain from eq. (5.5)

^max
Mci,

I
'

0’'inin

il/Co

I
(5.5a)

If the cross-section is S3’'mmctrical with respect to its centro^dal axis,

Cl = C2 = c and the extreme fiber stresses in tension and compression

are equal.

Introducing the notations

/

Cl
2i, (g)

called the section moduli^ eqs. (5.5a) can also he expressed in the form

^^max
M _ M

1 ^2
(5.5b)

In the case of a rectangular cross-section of width b and depth h (Fig. 5.19a),

Cl = C2 = h/2,

bh\ bh^

For a circular section of diameter d (Fig. 5.19b), ci = C2

/ =
icd?

32*

c//2,

In the case of the trapezoidal section shown in Fig. 5.19c, Ci < C2 which

makes Zi > Za. Thus if the beam is bent concave upwards, the maximum
compressive stress in the fibers of the top face will be greater than the maxi-

mum tensile stress in the fibers of the bottom fa'ce. In the case of a beam

made of cast-iron this may be advantageous, since cast-iron is stronger in

compression than it is in tension. Various shapes of cross-sections for beams

will be discussed in more detail in the next article.

All of the foregoing theory has been developed for the case of pure

bending, i.e., constant bending moment along the length of the beam. In
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such case, the shear force at each cross-section is zero and the normal

stresses due to bonding are the only ones produced. In the case of non-

uniform bending of a beam where the bending moment varies from one

cross-section to another, there is a shear force at each cross-section and

shearing stresses are also induced in the material.* The deformation as-

sociated with these shearing stresses causes warping of the various cross-

sections so that plane cross-sections before bending do not remain plane

after bending. This complicates the problem, but more elaborate analysis

shows that the normal stresses due to bending, as calculated from e(j. (5.5),

are not greatly altered by the presence of these shearing stresses. Thus it is

justifiable to use the theory of pure bending for (calculating the normal

stresses in the case of non-uniform bending and it is accepted practice to

do so.

EXAMPLE 1. A locomotive axle with outboard bearings A and B will be subjected

to transverse loads as shown in Fig. 5.20. Determine the maximum bending stress a

induced in the axle if a = 13.5 in., / — 59 in., diameter d ~ 10 in., and P — 26,000

lb. Find, also, the deflection 6 at the mid-point of the axle.

P P

SOLUTION. The bending moment between wheel loads at Z) and E is M = Pa —

26,000 X 13 5 in. -lb. The section modulus is Z - 7rdV32. Thus eq. (5.5) gives

_ Mcr... - ^
26,000 X 13.5 X 32

TT X 10’
3580 psi.

From cq. (5.4), the radius of curvature of the circular arc DCE, in pure bending, is

_ £/ _ 30(10)’ X ^ X (10)« _ .

M 26,000 X 13.5 X 64
’

Now, referring to Fig. 5,20, we see that the deflection CoC = 5 is

5 = p(l — cos B), (h)

where B = l/2p = 0.000705 radian. For such a small angle, we may take cos B =
1 — ^V2. Then cq. (h) becomes

2 8p* "
8p

59 X 59

8 X 41,900
0,0104 in.

‘These shearing stresses are discussed in Art. 5.5.
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LXAMPLE 2. Calculate the rnaximuTn bending stress that will bo induced in a
steel wire of diameter d — }-i2 m. if it is wound on a drum of diameter D — 20 in.

SOLUTION. For this ealeulation, wc use eq. (5.3). Thus

, _ A-
_ .3000)^ 1

" p' 10.016 ^64 4f),ll)0 psi.

It must b(‘ assumed that this does not exceed the yield point of the steel, so that the

material behaves elastically.

EXAMPLE 3. A simple beam 20 ft long is to carry a uniform load of 480 lb per ft,

including the weight of the beam itself, (a) Select a suitable Douglas fir beam with

rcf-tangular si'ction of depth-width ratio h/b ~ 1.2 and an allowable^ working stress,

<Ju. = 1200 psi, (b) Select a suitable st^‘el beam of standard 1-section to carry the

same* load, if the allowabh^ stress is Gu - 18.000 psi.

SOLUTION. Referring to Fig. 5.10, we see that, for a umformls' loaded simple

l)(‘am. the maximum bimding moment at the middle is

.17 111 fix
„ 480 X 20 X 20

8* “
"

K
24,000 ft-lb. ( 1 )

Also, for a rectangular cros.s-section of d(‘pth h and width b ~ /pT.2, the section

modulus is

5/r h'^

' ""
7.2

'Fhen with - Gu ~ 1200 psi, eq. (5.5b) becomes

1200
24,000 X 12 X 7.2^

from w'hich

Tlius the wood beam should have a 10-m. X l2-in. s(‘ction.

For the steel I-beam, eq. (5.5b) becomes

18,000Z = 24,000 X 12,

from w^hich tiie required section modulus Z — 16 in.? Now turning to Table B.3 of

Appendix B, p. 364 we find that an 8T-23 standard I-beam has a sc'ction modulus

Z — 16 in.^ and will be satisfactory.

PROBLEMS

1. A thin steel rule having a cross-section 0.025 in. X 1.00 in. is bent by couples

applied at its end.s so that a length I = 10 in. of the circular arc subtends a central

angle 6 = 60°. Calculate the maximum stress induced in the rule and the magnitude

of the bending moment M. Ans. a = 39,300 psi; M = 4.09 in -lb.
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iT A girder simply supported at A and B is uniformly loaded on the overhangs as

shown in Fig. A. The intensity of load is w - 10 kip /ft. Th(‘ girder is of standard

I-section of depth d = 30 in. and having a moment of in<Ttia / = 9150 in.'* De-

termine the ma.ximum fiber stress in the middle p(>rtion of th(' beam and the

upward deflection 8 of the mid-point C. Am. = 9S40 psi; 8 = 0.157 in.

3A 4A

Fjg a Fig. B

3. Rej^eat the .solution of the })rereding problem if the beam is of wood and has

a squan’ cross-s('ction 12 in. X 12 in. and a modulus F = 1.5(10)® psi. Assume that

w == 1000 lb/ ft (Truax - 20S0 psi; 8 - 1.67 in.

4. A simple beam of span / = 14 ft, (‘arries a uniformly distributed load of

intensity w ~ 250 Ib Tt. Caiculate the maximum bending stress if the beam has a

rectangular cross-section of width b ~ 5| in, and depth b = 7f m. Ans. =
13.50 psi.

5. A wood beam having a r('etangula,r eross-se('tif>n H in. wid(‘ X 12 in. deep is

supported and load(‘d as shown in Fig. H, Locate the ‘‘dangerous section” and

calculate the maximum bending stress. Arts, (Tma* = 1050 psi.

6. A temporary dam in a water channel i.s formed by setting vertical 3 X 12-in.

planks betwetm guide rails A A and BB as shown in Fig. C. Assuming no support

at D, cakailate th(‘ maximum bending stress induced in eaidi plank whim the water

depth on the left side of the dam is 6 ft as shown. Am. crn,Bx = 2000 psi.

Fig. C Fig. D

7. During a certain manufacturing operation each spoke of a flywheel (considered

as a cantilever beam) is subjected to the loading shown in Fig. D. Each spoke has

elliptical cross-section whose major and minor axes vary from X 2J in. at A
to 4 X 2\ in. at B. Calculate the maximum bonding stress induced in the spoke.

Ans. (Tmax = 1650 psi.

8. Calculate ^he center-to-center spacing of 2 X 8-in, floor joists to carry a floor

load of 50 lb per sq ft if the clear span is 16 ft and the allowable working stress

(Tu. = 1000 psi. Am. 13.3 in.
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9. Calculate the nominal depth h of floor joists spaced at 16 in. center to center if

the floor load is 140 lb per sq ft. The clear span is 10.5 ft and the joists are 2 in.

thick; the working stress == 1000 psi. .Irw. 10 in.

10. A standard 1-boain 20 ft long is to be supported and uniformly loaded as

shown in Fig. E. The supports A and B will be so placed that the negative bending
moment over either support will be numerically equal to the positive bending
moment at mid-span. If the allowable bending stress otu- = 18,000 psi, select a
suitable standard I-beam. Ans. 71-20.

Fig. E Fig. F

M. A cast-iron beam 12 ft long is supported and loaded as shown in Fig. F. The
cross-section of the beam is an inverted T, 6 in. de(*p by 4 in. wide, stem and flang(‘

each being 1 in. tlnek. Find th(‘ safe magnitude of P, if working strcs.se.s in k‘nsion

and compression are (Ti = 6(X)0 psi, (7^. = 10,000 psi, respeetiveiy. Ans. P = 1670 lb.

12.

A standard channel beam OOL.120) is bUi)ported and loaded as shown in

Fig. G. The triangular distribution of load is defined by its maximum intensity Wo
at B. If the allowable working stress (tension or compression) is ir,,, = 20,000 psi,

what is the safe value of ico? .4 ns. wo = 780 Ib/ft.

Fig. G Fig. H

13. A heavy wheel of weight W = 4000 lb is rolled very slowly across a simple

beam AB of span Z = 20 ft (Fig. H). Calculate the maximum bending stress in-

duced in the beam, if its section modulus Z - 12 in.^ Ans. (Tmai = 20,000 psi.

14. A simple beam AB carries two wheel loads Wi - 1000 lb and \V j = 2000 lb

as shown in Fig. I. The wheels are 5 ft apart but can have any position on the beam
as defined by the distance x. Find the value of x to make the bending moment under
the wheel W 2 a maximum and calculate the corresponding maximum bending stress.

The section modulus of the beam is Z = 7.3 in.^ Ans. x = 5.83 ft; = 20,700
psi.

Fig. I Fig. J
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15. Prove that the depth h nf cantilever beam of rectangular eros-^-section

should vary linearly with x to attain a beam of constant strength under uniformly

distribuk^rl load (Fig- *1) \s.sum(' that the flexure formula for prismatic beams

applies.

5.4 Various Shapes of (!ross-Sec*licms ol' fleauis

From the discussion in Art 5 d it follows that the niaxinmrn tensile or

compressive s1res.> in a IxnU bar is proportional to the disTanei' of th(‘ most

remote fibers from the neutral axis. Heiua* if tlu* material has the same

strength m tensi(»n and compressifin, it will be logical to choose shape's oi

cross-section ni whi(*h the centroid is at the middle of tlie depth of the Ix'ani

In this maniif'r the saiiu' t.aclor ol safety for libers in tension and for those

in cornpressKm \^ ill be obtaiiuxi This is th<‘ underlying idea in the choice of

sections symnK'trical with respe'ct to the neutral axis for materials su(‘h as

structural steel, which have about the same yield point in tension and com-

pression. Snch cross-scci lolls aie shown in Fig. 5.2 la, b, and e. If the

seetion is not symmetrical vvuth respect to the neutral axis, for example a

rail section, tlu* material is freciueiitly distributed between the head and the

base so as to have the centroid near the middle ol its height.

For a material of low strength in tension an<l high strength in compression

for example, cast-iron or concrete - the best cross-sect ii/ii for a beam is

not symmetrical with respect to the neutral axis but is such that the dis-

(c) (d)

Fio. 0.21

taiices.ri and co from the neutral axis to the most remote fibers in tensicn

and comprc'ssion are in the same proportion as the strengths of the mat/Crial

in tension and in compression. In this manner equal strength in tension and

compres.sion is obtained. For example, with a 7’-section (Fig. 5.21d), the

position of the centroiil of the section may lie adjusted along the height of

the section by properly proportioning its flange and web.

In designing a beam to undergo bending, not only the conditions of

strength should be satisfied but also the condition of economy in the weight

of the beam. Of two cross-sect ions having the same section modulus, that

is, satisfying the condition of strength with the same factor of safety, the

one with the smaller area is more economical.
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In comparing various .sha])os of cross-sc^'tions, consid('i‘ ^rst the rec-

tangular section of depth // aj)d width h ( Uig. r).2\a'i The section luodvilns is

Z
6

(a)

where A denotes the cross-sectional area. It is seen that the re(*t angular

cross-section becomes mon^ and more economical with increase in its

depth h. However there is a certain limit to this increase and the question

of lateral instability of the beam arises as the section becomes too narrowv

The collapse of a beam of very narrow^ rectangular section may be due not to

overcoming the strength of tlv material but to sidewise buckling.*

In the case of a circular cross-section of diameter r/ (Fig. 5.2 lb),

ird^

32
(b)

Comparing circular and scpiare cross-sections of the same area, the side k

of the square will be h = d\^/2, for which eq. (a) gives

Z = 0.147 .4d.

Comparison of this wuth lb) shows a sciuare cross-section to be more

economical than a circular one.

Consideration of the stress divStribution along the depth of the cross-

section (Fig. 5.18) leads to the conclusion that for economical divsigu most of

the material of the beam should be put as far as possible from the neutral

axis. The theoretically ideal case for a given cross-sectional area A and

depth h would be to distribute each half of the area at a distance h/2 from

the neutral axis as shown in Fig. 5.22. Then

and the section modulus becomes

Fig. 5.22 Fig. 5.23

*For a discussion of lateral buckling of beams, soe Timoshenko, Elastic Stability^

McGraw-Hill Book Co., Inc., New York, 1960.
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This ideal limit, although unattainable, may be approached in practice by

using an I-section or wide-flange section with most of the material in the

flanges (Fig. 5.21e). Due to the necessity of putting part of the material in

the web, the limiting condition (c) can never be realized; but for standard

wide-flange sections^ we have

(d)

Comparison of (d) with (a) shows that an I-section us more economical than

a rectangular section of the same depth. Furthermore, due to its wide

flanges, an I-beam will be more stable with respect to sidewise buckling

than a rectangular section having the same depth and section modulus.

In the design and selection ‘of beam s(‘ctions, reference is usually made to

a handbook* giving various propc'ities such as moment of inertia, section

modulus, etc,, of standard structural shapes. These shapes such as I-

sections (Fig. 5.21e) and U-sections (Fig; 5.21f) are usually specified by

the nominal depth in inches and the weight in pounds per lineal foot of

beam. An 8-in., 18.4-lb I-beam, for instance, is 8 in. deep, weighs 18.4 lb

per ft, and is designated simply by 81-18.4. Such beams having extra wide

flanges are specified in a separate class. For example, the notation 12WF65
denotes a wide-flange section having a nominal depth of 12 in. and weighing

65 lb per lineal foot.

EXAMPLE 1 . A prumatio beam in pure bending has a traf)ezoidal cross-section as

shown in Fig. 5.23, the top fibers being in compression. If allowable working

stresses in Umsioii and compression are at = 5000 psi and ac = 8000 psi, calculate

the ratio of bases hi/b^ for maximum economy.

SOLUTION. Let Cl and denote distances to extreme fibers from the neutral

(centroidal) axis as shown. Then from eq. (5.5a) we have

8000 = yci,

from w'hich ci/c2 = 8/5. Also ci = h. Hence

Cl =

The distance yc to the centroid of the trapezoid is

h( b2^2b,\

3\ 62 -h /

(c)

(0

•See, for example, Sled Construction by the American Institute of Steel Construction,

New York, 1959; also Appendix B-1, p. 357,
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Fxjuating this to the valiii* of e-j from (o), wo find

hi 11

KXAMPLK 2. A heam of square eross-sectioii

a X a is bent in the sertieal plain' of one of its

diagonals as shown in Fig. 5.24. Show that, fo^ a

given moment, the maximum fiber stress(‘^ can

be reduced by cutting off the shaded corners to a

depth aa/ \^ and calculate the optimum \alue of a.

SOLUTION. The inomciit of inertia of the com-
plete cross-section is / — a*/ 12 and the cor-

responding section modulus is Z — 12 (see

Ap})endix B). The mom(‘nt of inertia of the

reduced section will be obtained by adding to the

moment of inertia of the square baie about its

diagonal hd that of the two parallelogram.s rfdh

and g(dh about their common base dh. Thus

1 — a

l2~
- 4-2^^y2

aa <7(1 ~ a) <d( l
— a)'^

i2
(1 --f 3.^)

and the corrc'sponding s(‘cti(>n modulus becoim'S

z = -p—- , = 7^7 «H1
- «)' n + 3«). (g)

<7(1 — a) 12

'Phis sc'ction modulus is a maximum for that value of a which makes dZ/dcc -- 0.

Making this diffiTcntiation. we find a -
}(> ami the corresponding niaxirnuin section

modulus becomes, from (g),

- 1.053
V2a-'

12
’

(h)

Thus, by cutting ofT th<' corners, the section modulus is increased by about 5 per

(‘(all and the maximum bending stre.sses will be reduced by this percentage.

To understand how this removal of material actually incre'ascs the stnmgth of the

s(H*tion, v\c must observ(‘ tliat removal of the small corner areas simply reduces the

distance to extreme fib('rs m a. gu'ater proportion than it reduca's the moment of

inertia of th(‘ section. Thus tla^ section modulus Z — I/c is actually increased.

PROBLEM.S

1. A simply supported cast-iron beam is to ha\e the inverted T-section shown in

Fig. A. If the allov'able stresses for cast-iron in Uaisioii and compression are

(Ti — 4000 psi and a, 8000 psi, calculate the propiT stem thickness t of the section.

Am, i - 2 in.

2. For the channel lieain shown in Fig B, it is desired to have the ratio of extreme

fiber bonding strt*sses o', : cr, =3:7. What is the profx^r wail thickness t to realize

this condition? Am. i = 2 in.
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-H*j r K-

Fig. a Fig. B

3. A prismatic bar having a semicircular cross-section is subjeijted to pure bending

as shown in Fig. C. Caiculab^ the ratio at/a, of extreme fiber Jesses in bending.

Ans. ai/a, = 0.736,

i.

Fig. 0 hiG. D

E A rertanguiar wood beam i.s to be cut from a circular log of cliarnerei d (Fig. !>,).

C'alculute the ratio 6 'h to attain a beam of rna.vimum strength in })ure bending.

Ariy, h/ h ~ \ \2.
3. H(‘fcrriTig to Fig. E, show that the section modulus of a circular cioss-soction

will be iiKToaseti by cutting off the shaded segments to a depth d and find the value

of d to make the section modulus a rnaxinium, At?,?, 6 O.Oild.

6. A 12 X J2-iri. square pine timber to be used as a beam is given somew^hat the

form cjf an {-beam by cutting serriii ircuiar grooves of (iiameter d ~ 1(1 in, along the

sides of the beam (Fig, F) . If the allowable working stress for the material in tension

or compression is a,, = 1400 p.si, what is the maximum beading moment that such

a beam can safely resist? Ans. — 24,0(X) ft-lb.

7, A makeshift steel I-beam is formed by welding 1 -in.-diameter steel pipes to the

edges of a i-iri. steel plate 10 in. deep as shown in Fig. G. The wall thickness of the

pipe is i in. Calculate the section modulus Z. Ans. Z - 6.95 in,*’

Ftg. K Fig. F Fig G Fig. H
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8. A beam having originally a cross-section in the form of an equilateral triangle

is to be cut off slightly at the top as shown in Fig. H. Calculate the value of a,

defining the amount cut off, in order to make the section modulus Z 2 = I/C 2 for the

remaining trapezoid a maximum. Ans. a ~ 0.13.

5.5 Shear Stresses in Bending

In Art. 5.1 we have seen that in the case of a beam bent by transverse

loads there is, in general, both a bending moment and a shear force Vx at

each cross-section. In Art. 5.3 we have seen how the bending moment
represents the resultant of a certain linear distribution of normal stresses ctx

over the cross-section. Similarly, the shear force on any cross-section

must be the resultant of a certain distribution of shear stresses r over that

section. The question to be considered now is just what that distribution

must be to satisfy equilibrium conditions of the various elements of the

hesLm.

We begin with the simplest case of a beam of rectangular cross-section

(Fig. 5.25) and assume that Vx is the resultant shear force on a chosen

cross-section. Dividing the cross-section into infinite.simal strips parallel to

the 2-axis, it is reasonable to assume that on any one' such strip, the shear

stress r will be uniform across the width b of the beam and parallel to the

^-axis as shown. We also know from the discussion of Art 2.1 that such

shear stress on one side of the prismatic element mn must be accompanied

by equal shear stresses on each of the other three sides of the element (see

Fig. 5.25). Thus, we must observe at the outset that there will be horizontal

shear stresses between layers of the beam parallel to the neutral plane as w^ell

as transverse shear stresses between cross-sections and that at any point in
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the beam these complementary shear stresses are equal in magnitude. This

at once leads us to conclude that the shear stress t must vary as we go from

top to bottom of the beam. For if we consider the prismatic element m'n'

whoso upper face coincides with the free top surface of the beam, we see

that the shear stress t must vanish. The same conclusion holds for an ele-

ment one face of which coincides with the bottom surface of the beam.

Thus the shear stress r must vary with y and must vanish at y = ±zhl2.

The key to the true law of variation of r with y comes from examining the

equilibrium of an elemental block pnpiUi of the beam between two adjacent

cross-sc^ctions mn and mini distance dx apart as shown in Fig. 5.26a. The
bottom face bd:v of this block coincides with the bottom surface of the beam
and is free from stress. Its upper face is parallel to the neutral plane and at

the arbitrary distance yi therefrom and is acted upon by the horizontal

shear stress t existing at this level. The end faces of the block are repre-

sented by the shaded portion of the cross-section of the beam as shown in

Fig. 5.26b. These end faces are acted upon by the normal bending stresses

(c)

Fig. 5.26

<r. The complete elemental block, isolated as a free body, is shown in

Fig. 5.26c. There are. of course, also shear stresses on the end faces pn and

piUi, but we will be interested only in the equilibrium of this block in the x-

direction; hence, these shear stresses will not enter in the equation of

equilibrium and are not shown on the free body.

Before going further, we may observe at once that if the bending moment
in the beam has the same magnitude at sections mn and mini, the nomal

stress distributions on the ends pn and pi/q of the elemental block (Fig.

5.26c) will be identical. Then for equilibrium of the block in the x direction,

we conclude that r == 0. This simply verifies the fact that pure bending

can induce no shear stresses in the beam.

Consider now the more general case of varying bending moment, de-

noting by M and M dM the moments at the cross-sections mn and

mini, resjjectively. Then the normal force acting to the left on an elemental

area dA of the end face pn of the block will be, from eq. (5.5),
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(rdA
My
I

dA.

The sum of these forces over the face pn of the block will be

Jy. I
dA. (a)

In the same manner, the sum of the normal forces over the face piUi of

the block becomes

f
(M -b >

iv. I

dM)y
dA. (b)

The shear force acting on the upper face of the block is

rh di, (c)

where r is the shear stress at the arbitrary level /yi. The forces (a), (b),

(c), must be in equilibrium; hence

rb dx

from which

r
dx Ibjy^

ydA,

or. by using eq. (5. 1),

r i/dA. (5.0)

The integral in this expression is seen to represent the statical momxni^

about the neutral axis of the cross-section, of tht^ shaded portion ppnn
of the cross-section, i.e,, of that portion of the cross-section below (or

above) the arbitrary level y\ at which the shear stress r is re«][uired. De-

noting this statical moment by Q, eq. (5.6) takes the form

VQ
" = 7^- (5.7)

To see how this shear stress varies with the distance \h from the neutral

axis, we must now examine the variation of Q with t/i-

Referring to Fig. 5.26b, we see that for a rectangular cross-section

dA - bdy and Ci = /i/2, so that

ydA — b (d)
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This same statical moment will be obtained as the product of the shaded

area

and the distance

of its centroid from the neutral axis of the cross-section

vSubstiUiting (d) into eq. (57), we obtain

T = (5.8)

This shows tliat the shear stress r vanes parabolically with fji as shown in

Fig. 5.27b. When = dihf2^ r = 0, and w^hen //i
== 0, = Vh-/HI.

Noting that / = bh^/ 12, we have

w^here A hh is the total area of tlie cross-.se<*tion Thus the maxinmin

shear stress (horizontal or vertical) oc(*urs at the neiurat axis (/yi - 0 )

and is 50 per cent larger than the average shear stress VIA,

Since the shear stress r varies from top to bottom of the beam, it f* Hows

that the shear strain 7 = r/G must vary in a similar way. Thus originally

plane cross-sections of the beam become warped after bending. This

warping can be demonstrated by oending a rubber beam as shown in

Fig. 5.28. If straight lines mn and 'pq are scribed on the side of the beam
before bending, they will become curved lines m'n' and after bending

as shown! in the figure. At the points m\ p\ n', q\ the shearing strain is

zero so that the curves m'n^ and p'g' remain normal to the upper and

lower surface of the beam after bending. At the neutral surface, the angles

between the tangents to these curves and the normal sections mn and pq
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are equal to the shear strain r^nax/G. As long as the shear force W remains

constant along the beam, the warping of all cross-sections is the same;

that is mn' = pp\ nn' — qq\ etc. Thus the sh(*ar stresses r do not con-

tribute to the longitudinal strains in the fibers and the distribution of

normal stresses cr is the same as in the case of pure bending.

A more elaborate theoretical investigation of this problem shows that

warping due to shear strain does not substantially" affect the longitudinal

fiber strains, even when W varies along the beam^ provided this variation

is continuous as in the case of a beam carrying a uniformly distributed

load. In the case of concentrated loads on the beam, however, the stress

distribution near points of application of external loads becomes more
complicated, but these irregularities are very localized and do not appreci-

ably affect the over-all stress distribution in the beam. Thus it is usually

justifiable to use flexure formulas derived for pure bending in the case*, of

non-uniform bending, as wo have already done in the preceding articles.

In discussing the distribution of shear stress in the web of an I-beam,

\ce r*an proceed in about the .viirie manner as fora beam of rectangular

cross-section. Referring to Fig. 5 29a, lei //. denote the level at w^hich

wc wish to evaluate the shear stn Then with the dimensions of the

section as shown, tlu‘ statical moinent. of the shaded portion of the cross-

section about th<‘ neutral axis is
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Taking yi = 0, this gives for the maximum shear stress at the neutral

axis,

Taking //i = /ii/2, the minimum shear stress in the web at the junction

with the flange becomes

From eq. (5,7'), it is seen that between tji = 0 and //i — hi/2f the shear

stress varies parabolically as represented by the horizontal ordinates of

the diagram in Fig. 5.29b. The area of this diagram multiplied by the

thickness t of the web represents the total shear force V\. carried by the

web. Calculations show that for the usual proportions of standard I-

sections and WF-sections, V,v - F, i.e., the flanges contribute very little

to the total shear force V carried by the cross-section, and need not be

considered.

In this regard it will only be pointed out that eq. (5.7) is not applicable

in studying shear stresses in the flanges anyway, since it is not justifiable

to assume that the shear stress will be uniform across the width 6 of a

flange. For example, we see at once that for iji hi/2, the shear stress

over the free surfaces ah and cd of the flange must be zero, while across

the junction be, it has the value given by eq. (f). This non-uniformity

across the width b of the flange prevails to a considerable extent throughout

the flange, and is too complex to be analyzed by elementary methods.

i

(o)

6"

t „
10

(b)

Fig. 5.30

EXAMPLE 1. A simply supported wood beam of rectangular cross-section carries

a concentrated load P at its mid-section as shown in Fig. 5.30. Allowable working

stresses in tension or compression and in sliear parallel to the grain are given as

follows; = 1000 psi, ru, = 160 psi. \\'hat is the safe value of the load P?
SOLUTION. The cross-sectional area A and section modulus Z are

hh}
..1 = 6A = 60 in.‘; Z = — == 100 in.=

o
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The maximum shear force V" and maximum bending moment M are

P PI
r = = 12Pm.-lb.

Then from cqs. (5.9) and (5.5), wo have

dr P_ M \2P
~

2 80’ Z “
lOO'

Setting th(‘se maximum stresses equal to tlie given working stresses and solving for

the load P in each ease gi\'es

Pi = 80tu- = 12,800 lb, based on shear stress,

Pa = 8.33(ru; = 8333 lb, based on bending stress.

rhus the bending stress go\'erns and the safe load is P = 8333 lb.

KX\Mp].E 2. A beam AP supported at its (Mids has a span / — 4 ft and carries a

uniform load of intensitv w ~ 2(XX) lb ft over the full span. The cross-section of the

beam is a T-seetion having the dimensions shown in Fig. 5.31. Calculate the

maximum shear stress r, induced in th(‘ beam.

Fia. 5.31 Fig. 5.32

soLuaioN. The maximum shear force occurs on a section just inside one of the

supports and has the value equal to the reaction, i.e.,

r,„., = = 4000 lb.

The centroid of the section is located by the distance

4(1) +8X4 ,
Vc 2.83 in.

The moment of inertia of the cross-section is

= ^*-1- - 12(1.83)^ = 75.4 in.‘

The maximum shear stress occurs at the neutral axis of the cross-section; the

statical moment of ilic shaded area of the stem, with respect to this axis is

Q = 5.17 X 1 X J(5.17) = 13.34 in.^
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Suhstitutinj; thes(^ f|uantitios into eq. (5.7), we obtain

r Y9
It

4000 X 13.34

75.4 X 1

= 708 psi.

example: 3. Culrulate the maxinuim shear stress induced at the neutral axis of

a beam of cir^ailar cross-section (Fig. 5.32} if the total shear force at the section is V.

soLU'rioN. The moment of inertia of the cross-section is

The statical moment about the neutral axis of the shaded .semicircular area is

Q
TT^ 4r

T
With these values, ecj (5.7) becomes

VQ 4V' X 2r» 4 V
Ib Trr* X 3 X 2r 3 .4

where A ~ xr^ is the area of the circular cross-section.

(g)

PROBLEMS

d. Referring to Fig. 5.30, calculate the inaxiinum shear stress induced in the

beam if th(' load P - 10,000 lb is placed one foot to the rigiit of support A. /Ins.

= 187.5 psi.

2. A wood beam simply supported and uniformly loaded has a rectangular cross-

section 4 iu. wide X 6 in. deep. The allowable working stresses in flexure and shear

are <t^ — 1200 psi and = 160 psi. Calculate the span length I below whicli the

shear stress will govern and above which the bending stress will govern the safe

lof^. A ns. ( = 45 in.

3* A simply supported beam of span ( = 10 ft carries a uniform load of intensity

w. The cross-section of the beam is a rectangle 8 in. wide X 12 in. deep. The
maximum flexure stress due to bending is 1200 psi. Calculate the maximum shear

stress. Ans. r^ax = 120 psi.

4, A laminated wood beam is made up of three 2 X 4-in. planks glued together to

form a solid cross-section 4X6 in. as shown in Fig. A. The allowable shear stress

in the glued joints is Tu; = 50 psi. If the beam is 6 ft long and simply supported at

c

-z' H

ir
v/’^z/A

m
Fig. a Fig. B Fig. C
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its ends, what is the safe load P that can carried at the middle of the span?

What is the corresfxjndinK maximum flexure stress? Ans, P == 1800 Ib; (Tnux = 1350

psi.

5. A sinTiple bridge consists of tw^o parallel girders covered wuth cross planks.

Each girder is a redwood log 1 ft in diameter and the clear span / = 8 ft. The
allow^able stresses in bending and shear arc cr^, = 1000 psi, and = 120 psi.

What is the maximum weight IT of a steam roller, considered as a concentrated

load, that can safely (;ross the bridge* at very slow' speed? Assume that the allow-

able stresses are over and above those existing in the girders due to the weight of the

bridge itself. Ans. \V ~ 14,140 lb.

6, In a building structure, the overhanging end of a large wide-flange girder

supports a vertical load P of such magnitude that the flexure stress at A (Fig. B) is

9000 psi. Calculate the maximum and minimum values of the shear stress in the

web if the beam has a 24WF130 section (see Appendix B). .tns. = 9930 psi;

Tm 1^.^ 7980 psi

.

7: A .short cantilever beam (extruded magnesium) has the cross-section shown in

Fig. C. Calculate the shear stress across ah if V ~ r>0.(K)0 lb. yln,s*. r - 2500 psi.

5.6 Stresses in Built-up Beams

Fabricated or built-up beams and girders are frecpiently found in

engineering practice. S(‘veral examples of such iieains are shown in Fig.

5.33. Figure 5.33a represents the cross-section of a simple box beam

liuilt up of four wood planks held together by nails or screws spaced at

intervals along the length of the beam, ]*^igure 5.33b rcpn;senls the cross-

section of a wood girder formed simply by bolting two rectangular limbers

(o ) { b) {^)

Fig. 5.33

together and Fig. 5.33c represents a typical cross-section of a steel girder

formed by riveting angle sections and cover plates to the edges of a web-

platje.

The stresses in such built-up beams are usually calculated on the as-

sumption that the parts are rigidly connected so that the beam behaves
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like one of solid section. The computations will then involve: (a) designing

the beam as a solid beam and (b) designing and spacing the connections

so as to fulfill the requirements of (a). In the first step, the formulas for

solid beams are used, making allowance for the effect of rivet holes, slots,

etc., by using reduced cross-sectional areas. The calculations required

to design Uie connei^ting ekunents can Ix'st )>e discussed in connection with

particular cases.

Let us consider first the case of a box beam having the cross-sect ional

dimensions shown in Fig. ff.lUa. We assume that the beam is simply

supported at its ends with a span / — b ft and that it is to carry a vertical

(q) (b)

load P at mid-span. The allowable working stress m bonding is 1000

psi. It is required to find tiie propi^r spacing of lag scnwvs, each of which

can transmit a sliear force F - 000 II >.

The moment cf inertia of the cross-section with respect to its neutral

axis zz is

4 X (8F 8 X (IF
+ 8 X (4.5F == 495 in.

from which F = 5500 lb. Thus the shear force at each cross-section of the

beam becomes

K = ^
= 2750 lb.
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The? shear .stress across the junctions ah ami rd of the section, from e(). (5.7),

is

VQ 2750 X ‘M\ .

The coriTspondinji; horizontal shear i(>rce (o be transmit b^d bv e^acti screw is

/' - ]{\rT)

from which

F
2r

(U)0

' X 50
() in,

Built-up T-beams are more fre([uently used in practice than built-up

wood beams. Such a beam (Fig. 5 M5) is first designed as one of solid

section, making suitable deductions in cros>- sectional area to allow for the

weakening effect of the rivet holes, and using a suitable working stress a-„,.

The size and spacing of rivets will then Ik* selected so as to develop the

nominal flexure strength of the beam. To illustrate, k‘t us consider the

required spacing of the ri^'ets whidi (*onnect the flange angles to the W(d).

(q)

Fig. 5.35

Referring to Fig. 5.35, let e denote the .spacing of these rivets and consider

corresponding cross-sections mn and m\ni at which t he bending moments arc

M and M + AAf
,
respectively. Due to the difference Ail/ in these bending

moments, the normal stresses as on the sections mn and mini will be un-

balanced and there is a tendency for thi^ flange represented by the shaded

portion of the cross-section in Fig, 5. 35a, to slide with respect to the web.

This sliding is prevented V)y friction and by the shearing strength of the

rivet. Neglecting friction, the force on the rivet becomes equal to the differ-

ence in normal stress resultants in the flange at sections mn and mini.

This' difference is

AM
I

ydA, (a)
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where jy dA is the wStatical moment of the shaded area of the flange about

the neutral axis of the section. Now using the relationship dM/dx = F, eq.

(5.1), and replacing dM by AAf and dx by e, we have

Ail/ = Fe. (b)

Substituting this in eq. (a) and also denoting j y dA by Qp, we obtain

F = (5.10)

This represents the total shear force that must be carried by each rivet.

Observing that each rivet is in double shear and assuming an allowable

average shear stress for the rivet, the force F is readily computed for any

given rivet size. The corresponding spacing e is then calculated from

eq. (5.10).

EXAMPLE 1. A box beam is made up of two 10Li20 channel sections connected

tc» 16-in, X i-in. side plates with }-in.-diameter rivets spaced at 5 in, as shown in

Fig, 5.36. Also, to allow for riveting and painting, acce.ss holes are cut in the side

plates as shown. The beam has a span Z = 20 ft and is to carry a concentrated load

P at the middle. To allow for the weakening effect of rivet holes, the working stress

for bending is chosen as 0"^ = 16,000 psi. Calculate the safe load P, the average

shear stress r in the side plates along be between access holes, and the shear stress

in the rivets

Fiu. 5.36

SOLUTION, Referring to Table B.4 of Appendix B, we find that the smaller

moment of inertia of one channel about its own centroidal axis is 2.8 in.^ and fhe

cross-sectional area of one channel is 5.86 in.^ Then the moment of inertia of the

entire cross-section, ignoring rivet holes, is

L - 2(2.8 -f- 5.86 (7.39)*] -h = 944.4 iii.^
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Now using eq. (5.5a), and noting that the maximum bending moment is M « Pi/4,

we obtain

Me
T

P X 240 X 8

4 X 944.4
= 16 ,(XX) psi,

from which the safe load P == 31,480 lb. The corresponding shear force at any
cross-section in 7 = JP = 15,740 lb.

To calculate the average shear stress in the side plates between h and c, we must
first calculate the statical moment Q of half the cross-sectional area in I^g. 5.36a,

with respect to the neutral axis of the cross-section. This becomes

Q = 5.86 X 7.39 H- 1 X 4 X 6 - 67.3 in.*

The total shear force P to be carried between cross-sections through a and d can

now be found from eq. (5.10) by taking e — 15 in., the distance bf'tween centers of

access holes. Thus

P = 15,740 X 15

944.4
X 67.3 = 16,800 lb.

The web area available to transmit this force is 1 X 3 -- 3 in.® Hence the average

shear stress in the side plates along he is

r iiv

P

A

16.800

3
5600 psi.

To calculate the shear stress in each rivet, we must first hnd the statical moment
of one channel section about the neutral axis of the crosR-section. This becomes

Qr - 5.86 X 7.39 - 43.3 in.®

Then, again using eq. (5.10) and taking e -= 5 in., we find

P - 1 5,740 X 5

944.4
X 43.3 - 3610 lb.

There are two rivets each of cross-sectional area A ~ 0.442 in.'*' to transmit this

force. Hence the average shear stress in one rivet bc^comes

3610

2 X 0.442
4090 psi.

PROBLEMS

1. A built-up beam having the cross-seetjon shown in Fig. A consists of two

standard 41-7.7 steel beams connected by f-in.-diamett'r rivets spaced on 4-in.

centers along the length of the beam. The l)eAm is 5 ft long, simply supported,

and uniformly loaded so as to develop a maxinmiA f>ending stress of 16,0(X) psi.

Calculate the average shear stress induced in the rivets nearest the ends of the

beam. Ans, r = 5350 psi.

2. A cantilever beam is composed of two 6 x 6-in. timbcjrs held together by bolts

and connector rings as shown in Fig. B 'i’he bait holes are J in. in diameter and
each connector ring can safely transmit a force of 6000 lb in shear. If the load

P = 5000 lb, what is the required spacing of the bolts? Ans. e - 9.6 in.
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3. C’aF'ulato the inaxiTiiuiii bending stn‘ss<r in the beam o( th(' pna-edirig j)rf)bj(‘m,

assuming that the first bolt on the hdt i.s 2 in. from the wall. 1 ns. a — 1590 psi.

I. \ box beam like that slu’wn in Fig 5.33a is made of four (i X 1-in. uootl
planks (‘onnect«‘d by sen'vvs, f‘aeh of which can sah'ly transmit a shikar force of

250 lb. Cailculati' tlie mmimnm s par mg of screws along the length of the b(*am if

tlie maximum shixir force 1" =- 1000 lb. .<!/?.<? e = 4.3S in.

5. A built-up gin’tT is made bv rnading four 0 X 4 X ^-m. aiigh's to the (“dges

oi a 10 X 1-in. jilati
,
using 1 'in.-diam(*ter rivets, as slumn in Fig. C\ riu* girdi'r

i.s 20 ft long, simply support(‘d at th(‘ < nds, and carries a lamcentrated load I* at
the middle. Falcailati' tln’ rivet spacing e to di'velop tfie full fie.vural strength of

the girder if (r„. ~ 10,000 psi and the aliowabk; average .sfiear stress in tiu’ rivi'ts

is Tu, = 00(X) psi. [ns. V S.5 in.



CHAPTER VI
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6.1 Plastic Bending of Beams

The preceding theory of bending ha> hevn (h‘veloped on the 'assumptions

that plane (‘ross-se(‘tions of a beam befori' Inuiding remain plane after

bending and that th(‘ material follows Hooke’s law. These assumptions

lead to the condition of a linear distribution of stri'sses ovtT the depth of the

beam. This theory applies with good aeiairacy for many materials, so long

as the def(»rmations remain withm the elastii* limit. However, for the

bending of a steel beam btres.sed beyond thi* yield point, it is no longer

permissible to assume proportionality between stress and strain m the

longitudinal fibers. Sueh bending of a steel beam beyond the elastic range

of strain is eallod plastic beading.

To develop a theory of plastie bending

of steel beams, we begin with a considera-

tion of the stress-strain diagram for

structural steel as shown in Fig. 2.8a,

p. TF Since the elastic limit stress and the

yield stress are close together and since

the plastie strain during yielding may be

many times greater than the clastic strain

before yielding, it is customary to idealize^

this stress-strain diagram by three straight

lines as shown in Fig. 6.1. This diagram
assumes that proportionality between

stress and strain holds up to the yield stress ry j, and that for any strain

beyond this, the stress remains constant and^ equal to ay.p . It is also

assumed that the mateiral has the same yield point in tension and
compression.

Now let us consider a prismatic beam of arbitrary symmetrical cross-

section subjected to pure bending in the plane of symmetry as .shown in

Fig. 6.2. If the bending moment M is not too large, the beam will be elastic,

the distribution of bending stresses over the depth of the beam will be linear

139
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(Fig, 6.2a), and the maximum stress in the most remote fiber from the

neutral axis will be less than the yield stress. This represents the case of

elastic bending as discussed in the preceding chapter.

If the bending of the beam is increased beyond the elastic range, experi-

ments show that plane cross-sections before bending continue to remain

plane after bending. Thus we always have the strain in each fiber propor-

tional to its distance from the neutral axis. Some of the fibers more remote

from the neutral axis will acquire strains beyond the elastic limit. However,

we see from the stress-strain diagram, Fig. 6.1, that the stresses in these

overstrained fibers remain constant and equal to the yield stress <Ty p.. This

condition is represented in Fig. 6.2b. The central unshaded portion of the

beam is still elastic while the shaded outer regions have become plastic.

<r < ^yp

a‘-<iTyp

(a)

Fig. 6.2

A«ui rol Axis.

I

5
-

(c)

With further increase in bending, more and more of the inner fibers reach

the yield condition until finally the entire beam, with the exception of a very

thin layer at the neutral axis, becomes plastic. This condition is represented

in Fig. 6.2c. The corresponding bending moment is called the plastic

moment for the section and is denoted by Mp. Neglecting strain hardening

in the outer fibers, no further increase in the bending moment can be at-

tained. Thus the plastic moment Mp represents the limiting strength of the

beam in bending.

To evaluate the plastic moment Mp for a given cross-section, Fig. 6.3a, we
assume that in the fully plastic condition every fiber of the beam is stressed
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to the yield point ay p., those above the neutral axis being in compression
and those below the neutral axis being in tension, as shown in Fig. 6.3b.

Then since the sum of the internal forces over tlie entire cross-section must
reduce to a couple equal to the bending moment Mp, we conclude that

a.vp A, - ay,p Aj -0, (a)

and

(Ty p All/, + (Ty p A22/2 = (b)

where Ai, A2 are the areas below and above the neutral axis, respectively,

and 2/1 and 2/2 are the distances to their centroids. For locating the neutral

axis, we obtain from eq. (a)

(6 . 1 )

where A = Ai -|- A2 is the total area of the cross-section. Thus the neutral

axis divides the total area of the cross-section into equal parts. It will be

noted that the location of the neutral axis for plastic bending is, in general,

different from that for elastic bending (see p. 1 14). Replacing A 1 and A2 by
A/2 in eq. (b), we obtain

A
^ (yi 4 Hz). (6.2)

For the particular case' of a rectangular cross-section, A = 6/i, = 2/2
=

/i/4 and eq. (0.2) becomes

The maximum elastic moment for the same section is

Thus, for the rectangular cross-section, we have the ratio

My ^ 3

M, 2

and conclude that the plastic moment is 50 per cent greater than the maxi-

mum elastic moment for the same rectangular section.

For a circular cross-section of radius r, A = rr*, = 4r/3ir and
eq. (6A) becomes
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The maximum elastic moment for the same section is

Z =

Thus, in this case, the ratio

M,

(f)

from which the plastic moment is s(‘en to he 70 per cent |z;reater than the

maximum elastic moment.
If M'o write eq. (ti.2) in the form

P

^U//1 -h

(g)

we S(^e then the quantity + ^ 2 ) may he consirlered as a s(H*tion

modulus for th(^ case of plastic hendina- Denoting this ipiantity hy Z,„

we have

^/» ~ (//i + Jh)’ (O.S)

Applyitif^ this formula to the particular case of a [‘iWi oO wide flange

section, we have, from Tiihle H.2 of Appendix H, A ~ 14.71 in.*’, aiid

8.08 X 0.641 X 5.78 + 5.46 X 0.:i71 X 2.78
,

.

?/i
== ih = 1-82 in.

Thus

= i X 14.71 X 9.64 - 70.9 in.\

while the (dastic section modulus is Z = 64 7 in.’’ Eor such a section the

ratio

Me Z G4.7

and the plastic moment is only JO per cent greater than the maximum
elastic moment.

In the practical design of beams, the allow^able loads are sometimes

selected on the basis of the plastic moment that can be dev'eloped by the

seciion rather than the maximum elastic moment. This procedure,

analogous to that of Art. 2.3, often results in a more efficient use of the

material and is called limit design. To illustrate, let us consider the case

of a simply supported l>eam loaded at the middle as shown in Fig. 6 4.
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If the load F is not too large, the

entire beam will bo elastio and wo
have the deflertion cuiwe AFB a.s

shown in Vig ().4a Increasing the

load gradually, a value will sor.n b<‘

reached for which th(‘ maximum
extrerm^ fiber stress at (

’ will be e(|-ial

to (Tv ,). although the beam is still

completely elastic. This load, d(‘-

noted by Pe, represents the elastic

limit load for the beam. As P is

increased beyond this valiuu tlu'

fibers in tin* neighborhood of point ('

anaximum bending moment) begin

to yield and this yielding will progn^ss until, when tlu' bending moment at C
reaches the value 3/;., a pUisiir fiin<}( will beformi'd at f\ Most of the beam
will "till be elasti(‘ but with the phi'-tic hinge at C, it continues to deflect

without further increase in th(' load, Th<‘ value of P which produces this

condition is called the limit load and is denoted by Pj 'To calculate this

limit load, wo hav(‘

"2
I
-

from which Pi = 4Mp/L A safe working load taken as P,„ - Pe/h
ill have a faetor of safely n based on tin* elasiie limit load A safe working

load taken as 7A- - P/./^h will have a factor of safety n\ based on the

plastic limit load, l^sing this second procedure for .selecting the allowabU*

working load represents the idea of limit design.

F.x>^MPLE 1. A stepjied steel shaft of circular <Toss-sectiou is built-in at C and
louded at th(‘ free end A as shown in Fig. 0 ( aiculatr' th(‘ ratio of dianaUers
d

,

’ d-: in*order that pluv^tie hirig(‘ conditions will devoioi) siinultaneously at and C.

1^2A 1
2

1 - 5 r

; t

' i
;^ 2 ^ ?

Fig. (1.5

soLGTiciN. 'rhe bf'nding moment at B is —Pl/2 while that at C is —Pl\ thus

they an; in thf' ratio I : 2, and the plastic sedion moduli at B and C must he in

the same ratio. From this r(‘(juirement, we have (see eq. e)
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Fig. 6.6

^ „ 1
,

^ 2
^ ” 2

from which di/d^ - 1/^2 - 0.794.

EXAMPLE 2. Calculate the plastic moment J/^. for the stool T-section shown in

Fig. 6.6 if the yield stress <7-y p
— 40,000 psi.

SOLUTION. For fully developed plastic bending, the neutral axis divides the total

area into two equal parts. Hence in this case the neutral axis NN coincides with

the junction between sti'm and flange as shown. Then from cq. (6.2), we hav('

/4fp = 40,000 X 3(1.5 -I- 0.5) - 240,000 in.-lb.

PROP LEMS

J. Locate the neutral axis NN for fully plastic bejiding of a steel beam of triangular

cross-section as shown in Fig. A. Am. hi — 0.707 h.

2. Calculate ihc plastic section modulus for the triangular cross-scction in Fig. A.

A ns. Zp = 0,0977 bh*.

3. A simply supported steel beam has a span / ^ 5 ft and a 3 X 6-in. rectangular

cross-section. If the beam is uniformly loaded and ctj ^
- 40,000 psi, what is the

maximum intensity of the load that the beam can support? Am. w ~ 28,800 Ib/ft.

Fig. B

4. A steel beahi has a square cross-section with two semicircular grooves cut in

its sides as shown in Fig. B. Calculate the plastic moment Mp that this beam can

develop if (r, p. = 36,000 psi. Ans, Mp = 740,000 in.-lb.

5. A cantilever beam consists of a steel rod of diameter d that has a centered

bore of diamett:/- di for one-third its length as shown in Fig. C. What should be

the diameter di of the bore for plastic hinges to form simultaneously at A and C
under the action of a load P at the free end? Ans. di « 0.87^d.
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6.2 Beams of Two Materials

Beams made of two or more different materials are frequently encoun-

tered in engineering practice. Common examples are wood beams rein-

forced by steel plates and concrete beams reinforced by imbedded steel

rods. The theory of bending of such beams within the elastic range of the

materials is quite simple. For a l>eam of two materials, the procedure is

to transform the composite beam into an equivalent beam of one material.

Fig, 6.7

Consider, for example, the case* of a wood l>\'im of rectangular cross-

section reiniorced on the bottom by a steel plate as shown in Fig. 6.7.

Assuming that no slip takes place between the wood and steel during

bending, the theory of solid l)eams will still apply. That is, plane cross-

sections before bending remain plane after bending and the strains in the

longitudinal fibers are proportional to their distances from the neutral

axis. Thus for any bending cur\atiire 1/p within the elastic range of the

material, the normal fiber stress in the wood, at the distance y from the

neutral axis, is

<r = E^y/p

and the corresponding element of normal force on the area dA = bdy is

dy, (a)
P

where is the modulus of elasticit}^ of wood. Similarly, for an elemental

area of the steel,

dF, ^ — by dy, ^'b)

p

where E, is the modulus of elasticity of steel. In the case of pure bending

these elemental forces, summed over the total areas of wood and steel,

respectively, must have a net resultant force equal to zero, and the sum of

their moments about the neutral axis must be equal to the resisting moment
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cli'voloped by the sertioii. Without actually making these summations,

we note that the results will be iiiifhanged if we write eq. (a) in the equiv-

alent form

dF„ = hj y dy. (a')

This shows that we may regard the wood portion (4 the eross-seetion of

\\idth b as equivalent to a steel stem of redueeti width

as shown in J-'ig (l.71>. Under a givcui Icmding, iIk* composite section in

Fig. () 7a and the trufisformnl scctutn in Fig t).7b will both develop the

same resisiing moment
As soon as we hav(' the traiL'^forined section, the problem of the bending

of the beam of two miUerials is nnluced to that of the bending of a steel

beam of 7\s(M*tion which can lu‘ treated on the basi^ of tht‘ theory previ(nisly

developed in Art for a given Ixmding moment M on the section,

the extreme tcmsih' stress at. the bottom will bo

Mci

and at the top th( compressive stress will be

Mo,
(T2 — ~j~’

where I is the moment of mmaia of the transformed section, Fig. 6.7b.

These bending stresses are, of course, for the equivalent steel section

To obtain the true maximum compressive stress in the wood, the stress

(Tj must be reduced in the ratio £'«/£'«.

In the above diseiission, the less stiff material (wood) was transformed

Fro. 6.8 Fig. 6.9
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into an equivalent width bi of the stiffer material (steel). The reverse

procedure will obviously be equally satisfactory.

If the compo.«ite beam consists of more that two materials, the trans-

formed section may, in general, be obtained in terms of any one of them.

For example, Fig. (i.Sa represents the rectangular eros.s-seetion of a lam-

inated beam of three materials having moduli of elasticity Ei > K2 > E^.

Then a suitable transformed section of the stiffest material will be that

shown in Fig. G.8b, where 61 = b, In = E^b^'Ex, and Ih = Ezb/Ex.

Jf the composite beam does not have a rectangular cross-section, the

problem of finding an equivalent, transformed se(‘.tion may be more com-

plicated. Consider, for example, a beam of two materials having a circular

cross-section as shown in lug. ().9a and as.sume Ey > Then in the

transformed section, Fig. G.Ob, each elemental strip of width b in the lower

half of the cross-section must I)e reduced to width by = (E2/Ei)b. This

will be accomplished by making the lower half of the transformed section

elliptical as shown.

r.XAMPLE 1. A timber beam having an 8 X 12-in. rectangular cross-section is

reinforced top and bottom by steel plates 8 in. wide X i in. thi(’k as shown in Fig.

6.10a. The moduli of elasticity are E, = 30(10)* psi and E,o ^ 1.5(10)* psi. The
allowable working stresses are a, = 16,OCX) psi and cr^. = 1200 psi. Find the maxi-

mum allowable bonding moment for the section.

SOLUTION. The ratio ; F, = 1 : 20. Hence the transformed section will be

an I-section with w^eb thickness by — 5/20 ~ 0.4 in, as showm in Fig. 6.10b.

Fig. 6.10 Fig. 6.11

To determine the safe bending moment, wc must first decide which allowable

working stress wdll govern. The allowable stress in the web of the equivalent

beam will be (t', = 20 X 1200 = 24,000 psi. The allowable stress in the flanges is

a, = 16,000 psi, hence the flange stress governs.

The moment of inertia of the transformed section is

7 + 4(6.25)* +
0.4(6)*'

3
370 in.^
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Then, from eq. (5.4)

= -0-. ^ X 16.000 = 911,000 in.-lb.
c 6.5

EXAMPLE 2. The cross-section of a small beam cut from a sheet of 7-ply ply-

wood has the dimensions shown in Fij^. 6.11a. Alternate layers of the plywood
have the grain parallel to the length of the beam. The beam is 4 ft long, simply

supported, and loaded at the middle. The modulus of elasticity parallel to the

grain is Fj = 1.6(10)* pel, that perpendicular to the grain is Fj = 0.4(10)® psi.

The corresponding working stresses are ~ 1200 psi and cr? = 300 psi. Calculate

the safe value of the load P.

SOLUTION. The ratio of the smaller modulus to the larger is F? = 1 : 4.

Hence the width of layers having the grain across the axis of the beam should be

reduced in the ratio I : 4 and the transformed section will be as shown in Fig. 6.11b.

The moment of inertia of this transformed section is

_ 1(0.875)^ ^

12 ^
07J)^.125V

12
~ 2[0.09375(0.25)^J - 0.0439 in.^

The corresponding bending moment for th(t section is

/ 0 0430
X 12(X) - 120 in.-lb.

c 0.437

and the safe load P at the middle of the beam is

4d/,„ax 480
........ . U) lb

If a laminated beam of two materials has many layers, it will be justifiable to

express the moment f»f inertia of the transformed section b}’' the approximate

formula

hh^

"]2~2 iT"'

where h) = is the reduced width of tJie softer layers. v^iiLstjtuf,i;ig this

value of b\ into eq. (d), we obtnm

1 -

PROBLEMS

1. A simply supporUxi beam 10 ft long and carrying a concentrated load F at the

middle has the cross-section shown in Fig. 6.7a. Taking P - 2000 ib, EJE, =
1/20, b - 4 m., h = 6 in., and t - 1/2 in., calculate the maximum tensile stress in

the sU'cl and tht' maximum compressive stress in the wood. .4ns. a, ~ 7640 psi;

= 1300 psi.

2. A wood l>eam of rectangular cross-section 6 in. wide by 8 in. deep is reinforced

at the top by a steel plate 2 in. wide and I in. thick and at the bc'ttom by a steel

plate 6 in. wide and 1/2 in. thick. The moduli of elasticity are F, = 30(10)® psi

and Ew = LfiClO)® psi and the allowable stress in the steel is tr, = 16,000 psi.
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Calculate the safe bending moment for the section and the corresponding maximum
fiber stress cr„ in the wood. Arts, M = 308,000 in.-lb; (r«, « 655 psi.

3. A laminated wood beam has a rectangular cross-section 8 in. wide X 12 in.

deep. The layers arc each ^ in. thick, and alternate layers have their grains crossed

at right angles. The ratio E 2 : E\ = 1 : 4 and the corresponding working stresses

are cri = 1200 psi parallel to the gram and erz = 300 psi across the grain. Calculate

the safe bending moment for the section. Am. M == 12,000 ft-lbl

4. A bimetallic strip such as is used in thermostats is made of a strip of copptir

(Er = 17(10)® psi) and a strip of aluminum {F.., - 10(10)® psi), each 1 in. wide
and iV thick, solidly fused together along the junction plane as sliown in Fig. A.

Calculate the radius of curvature p due to pure b^'iidmg of the strip if M = 10 in.-lb-

What is the corresponding maximum stress in the copper? Aws. p = 208 in.;

cTr = 4450 psi.

5.

A steel shaft with circular crf)s.s-so(‘tion of (lianu'ter d — 10 in. hns an alumi-

num core of diameter d/2 ^'= 5 in. as shown m Fig. H. (?al'‘ulat(' the safe bending

moment M if the allow’able stress in the steel is a, ^ 20,000 psi. Atih. 47 ~ 157,000

ft-ib.

6.3 Reinforced Conerete Beams

As mentioned in the pre^'eding article, c onende beams r(‘inforeed with

steel represent an important example of beams of two difh'rfuit materials

A complete treatment (;f the theory of reinforced eonen l(' is beyond tiie

scope of this book: we givt' here only a brief diMaissioii ot this important,

problem.*

It is well known that the strength of eonerete is mu(‘h greater in eom-

pressioii than in tension, lienee a rectangular beam of eonereto will fail

from the tensile stre.sst's on the convex side. 'Fhe beam can be greatly

strengthened by imbedding steel burs <ni the (‘f)nv(^x side as shown in

Fig. 6.12. Since concrete grips the steed strongly, there will he no sliding

of the steel bars with re.spect to the eonende during bending and tiie

methods developed in the previous artade can' also he used here for cal-

culating bending srre.sse.s. In practice, the ero.ss-seiditinal an^a of the steel

bars is usually such that the tensile strength of the; eoncrele on the convex

*For a more complete t,r(‘atment ot reinforced concrote, see C. \V. Dunham, The Thcon/

and Prartice of Reinforced Corurete. McGraw-Hill Hook Co
,
Inc., New Vork, 1953
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side is overcome before yielding of the steel begins, and at larger loads

the steel alone takes practically all the tension. Hence it is established

practice in calculating bending stresses in reinforced-concrete beams of the

type shown in Fig. 0.12 to assume that all the tension is taken by the steel

and all the compression by the concrete.

(a) (b) (c)

Fig. 6.12

Concrete does not follow Hooke\s law, and a compression test diagram

for this material has a shape similar to that for cast-iron (see Fig. 2.8b).

As the compressive stress increases, the slope of the tangent to the diagram

decreases, that is, the modulus of concrete decreases with increase in stress.

In calculating stresses in reinforced-concrete beams, it is usual practice

to assume that Hooke’s law holds for concrete and to compensate for the

variable modulus by taking a lower value for this modulus than that

obtained from compression tests at small compressive stresses. In specifi-

cations for reinforced concrete it is usually assumed that n, the ratio of

the modulus of elasticity of the steel to that of the concrete, is

n 15.

Transforming the area of the steel A, into an area of concrete nA.,

equivalent as far as elastic properties are concerned, the transformed

cross-section is that shown in Fig. 6.12c. The stress distribution follows

a linear law, vsince plane cross-sections remain plane during bending and

since Hooke’s law^ is assumed to hold for the concrete. Under these

conditions, the neutral axis will lie at the centroid of the shaded cross-

section (Fig. 6.12c). This requires that the first moment of the shaded

area above the neutral axis mm with respect to mm must equal that of

the shaded area below; that is,

led

(bkd) ^ = nA. (d - M).

This equation is quadratic in terms of fc, the value of which defines the

position of the neutral axis.
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If the ratio of the area of the steel .4, to that of the area of. the concretf

above the center of the steel be denoted by

the solution of the above equation gives

K = \2pn + (pa)’ — pn. (6.4)

Instead of using the moment of inertia of the transformed section as in

the preceding article, it is more direct to proceed as follows. The average

stress acting over the area above the neutral axis is (Tc/2 where is the

maximum compressive stress in the concrete. The total compressive force

C is (<rc/2) bkd. For a linear stress distribution in bending, the center

of pressure of C is at the centroid of the triangle which represents the stress

distribution; that is, at z = ^kd. With no axial forces acting on the beam,

the tension T must equal C and these two forces constitute a c.ouple whose

moment is the moment of resistancV and is ecjual to the prodiu^t of C and

the moment arm jd, where = I — k/'A, Hence the bending moment,

Me based on a maximum stress a,, in the coniTete is

M. =
I

bl.-d(jd) =
^
a^d-. (6.5)

As the maximum allowable fiber stress in the steel will probably not

be produced by the same value of bending moment as produced Ccj it

is necessary to compute also the bending moment M„ based on a,. The

couple used for this purpose is T(jd) where T = is the force in the

steel. Then

Mg = (JaAgjd. (6 .6)

In determining the safe bending moment that may be applied, the smaller

of the tw^o values Me and A/, should be u.sed.

If the bending moment be given rather than the maximum allowable

fiber stresses, the value of the maximum fiber stresses caused by the

given moment can be computed in the same manner as above and then

examined to see if either or both exceed permissible values.

To protect the steel from damage by fire, the reinforcement in beams,

girders, and columns should not l)e placed nearer the exposed surface

than in. This specification fixes a lower limit for the depth of concrete

below^ the reinforcing bars designated as a in Tig, 6.12b.

EXAMPLE 1. If n = 15 and c, = 650 psi, determine the safe load at the middle

of a reinforced-concrete beam 10 ft long, freely supported at the ends, and having

6 10 in., d = 12 in., A, = 1.17 sq in. What is the stress in the steel? Consider

two cases: (a) if the weight of the concrete is neglected; (h) if the concrete weighs

150 lb per cu ft.
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SOLUTION, (a) The transformed area of the reinforcing rods is nA, = 15(1.17) =
17.55 sq in. The neutral axis 1-1 must be so located that it is a centroidal axis for

the shaded areas shown in Fig. 6.13a. This requires that XM = 0, i.e.,

aoy)
^

17.55 (12 - y),

from which y 4.%5 in.

The compressive force C is the product of the compression area and the average

compressive stress acting thereon; namely, C == (650/2)(10 X 4.965) = 16,100 lb.

Then since T - C, and the moment arm of the couple is (12 — 4.965/3) == 10.35

in., the moment based on a safe stress of 650 psi in the concrete is

J/e - 16|100(10,35) = 166,500 in.-lb.

The maximum bending moment is P//4; equating this to 166,500 in.-lb, one finds

P » 5570 lb.

Since T -- C ^ 16,100 lb, the stress in the steel is P/A = 16,100/1.17 * 13,760

psi.

(b) The concrete weighs 150(10)(14)/144 = 146 lb per ft of length of the 10 X
14-in. cross-section, allowing 2 in. of concrete below the reinforcing rods. The
maximum bending moment cau.se(l by this uniform load is == [146(10)*/ 8] 12 =
21,900 in.-lb. Hence the moment available fur carrying the concentrated load P is

166,500 - 21,900 = 144,600 in.-lb. Then P//4 = 144,000 and P - 4820 lb.

From the foregoing disciussion it us seen that the bending moment which

produces the maximum permissible stress in the ct>ncrete of a reinforced-

concrete beam tvill not necessarily stress the steel to its safe limit. Or it

may, on the other aand, overstress the steel, and if the bending moment is

reduced so as to lower the steel stress to a safe value, then the concrete will

be understressed. Both of these (conditions are unfavorable from the stand-

point of economy, since the full strength of either the steel or the concrete

is not being utili2.ed. When a reinforced concrete beam is being designed,

however, it is possible to so proportion the ratio of the steel to the concrete

in the cross-section that the maximum permissible stresses in the concrete

and the steel are realized simultaneously. The beam then is said to have

balancfd reinforcement. In most practical cases, balanced reinforcement can

Fig. 6.13 Fig. 6,14
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only be approximated on account of desi^^n conditions, such as size of re-

inforcing rods available, etc.

In ideal balanced reinforcement, the tensile stress in the equivalent

concrete, which replaces the steel and whose area is n times as great as that

of the steel, is to be (rjn at. the same time as the compressive stress in the

outside fiber of the actual concrete is Since these stresses are proportional

to their distances from the neutral axis,

Oe _ g, /n 1 — A: Ct

d —kd k ruxc
(67)

Once k is determined, the remaining procedure is exactly the same as

before and is illustrated in the following numerical example.

EXAMPLE 2. Design a concrete beam »vith balanced reinforcement to sustain a

bending moment of 2,000,000 in. -lb. Width of beam to be 20 in., cr, = 16,000 psi;

cr, - 600 psi; n - 15.

bC»Lr'riON. The' transformed area and the stress distribution an* shown in Fig.

The teasilo stress in the transformed area of concrete equivalent to the

ongiiiai steel is one-fifteenth of that in the steel since its area lias been multiplied

by 15. The distribution of stress intensities is assunied to be a straight line as shown
m Fig. 6.14b. The neutral axis is located by using eq. (6.7), i.e.,

1j-J ^ Jij,m
/t

' "
15‘x m

from wdiich

k = 0.360.

The moment arm of the couple TC is

jd = <i - - 0.88(i.
O

The compressive force in the concrete above the neutral axis is (3tX))(0.36fi)(20) ==»

2l60(i. The resisting moment is (2j60d)(0.8Sd) and is equal to the given bending

moment of 2,000,000 in. -lb. Therefoie 1052 sq in., from which d « 32.6 in.

In balanced reinforcement, T = f'\ and hence

- 2160 (32.5)

from which

A„ fsq iU.

This area of steel can Ik .«upphcd by six 1 hitih reinforcing bars.

PftoBL VJM.S

1. For a reiniorced-conoH'u^ Otam, o r3 . d ^ lu in
,
ana the hxtb. oi tiiB

reinforcing rods is } sq in. Asej^me n - 3 5. - 6(K) usi, and o, ^ iS,tKX) pti

IMiai is the maximum bending moment in iu.-Ib ihao t.Ue beam can carry? A>^8.

M « 66,800 in.-ib.
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2. For a roinforced-concrete beam, 6 = 15 in., d = 28 in., and the total area of

the reinforcing rods is 3.02 sq in. Assume w = 20, = 450 psi, (Ts — 12,500 psi.

What is the maximum resisting moment m ft-lb? .Ins. 76,000 ft-lb.

3. For a reinforet*d-eonerete beam, 6 = 10 in., d = IS in., t(»tal area of rein-

forcing rods Ls i sq in., n = 15. If this beam is subjected to a bending moment of

10,000 ft-lb, what will be the maximum stresses s(‘t up in the concrete and the

steel? .Ins. (Tc = 250 p.si; tr, = 7500 psi.

4. In a certain beam, the stn‘sses produced in the concrete and steel are to be

determined. 6 = 20 in., d = 36 in., area of reinforcing rods = 7.2 sq in., n = 18

and the applied bending moment is 2,500,000 in. -lb. /Ins. = 11,330 psi; (Tr — 508

psi.

5. For a reinforced-concrete beam, 6 = 18 in., d = 27 in., n = 15, ac
- 500 psi.

If the beam is to resist a bending moment of 800,000 in. -lb, how much area of steel

reinforcement must be used? What is the stress set up in the stecP /his. 1.593 sq

in.
; 20,450 psi.

6 . Solve Problem 5 if the bending moment is 1,200,000 in.-lb. Ans. 5.14 sq in.;

10,100 psi.

7. A cantilever beam, 6 ft long and 8 in. v\ide, is to be made of reinforced con-

crete. It is to be designed to carry a total uniformly distributed load of 6000 lb,

including its o\\n weight. What should be its effective depth at the wall'^ 3 ft from

the w'all? Indicate the position of the steel reinforcement. Assume n = 15, (Tc
~

650 psi, (j, = 16,000 psi. .hi.s. 15.84 in.; 7.92 in.

8. A reinforced-concrete b(‘am is to carry a bending moment of 102,400 in.-lb

If d = 1.56, what are 6, d, and the total area of reinforcing steel needed? .Assume

(Ts = 18,000 psi and (Tc = 600 psi; = 30 X 10’’' psi and Er = 2 X 10® psi. Ans.

d = 12 in.
;
A = 0.533 sq in.

9. A simply supported beam 15 ft l(^ng earrie.s a renter load of 6500 lb. The
economic percentage of steel is to be used and d = 20 in. Find 6 and /h, assuming

cr, - 16,(X)0 psi, a,
-

5(X) ji.si, and n = 15. Take account of the w<‘ight of the beam,

assuming concrete to weigh 150 lb per cu ft. Allow 2 in. for dejith a below the re-

infureiiig bars. .hi^. 6 = 14.1 in
;

.1, =- 1.41 sq in.

10. In th(‘ beam of Problem 9 thri'c |-in -diainet(‘r round bars and two i-m.srjuan'

bars an‘ used foi rdnforcement. The neutral axis may be assumed to be 6.39 in.

below the top. What is the maximum shearing stress set up in th(^ eonereb' and
what IS the maximum bond stress between reinforcement and concrete*'' Ans. 22 5

psi; 32 psi.

6.4 Bending of Beams of Arbitrary Cross-Section

In developing the theory of bending of prismatic beams, x\rt. 5.3, it

was emphasized that the beam was assumed to have an axial plane of

symmetry and that the applied loads were acting in this plane. In general,

if the applied loads do not act in a plane of symmetry, bending of the beam

will not take place m the plane of loading and the theory devek^ped iiii

Art. 5.3 becomes invalid.

Consider, for example, the case of a beam of Z-section subjected to

bending couples M applied in the xy-plsLiie as shown in Fig. 6.15. Let it

be assumed that the beam also bends only in this plane, i.e., that Oz is
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the neutral axis of the (Toss-section. Then tensile and comproKSsive stresses

in the flanges will be uniformly distributed over the widths b, and resultant

internal forces T and C will act at the mid-points of the flanges as shown.

Clearly these ecpial and opposite forces constitute an internal fxmding

moment about the /y-axis which is not balanced bv any corresponding

applied externa! monnait, tlie applied couples M being in the r//-plane.

Thus the assumed deformation (curvatun* otily in tlu* ,r//-pUui(‘) is imain-

sistant with thi*, conditions of (Mpnlibrium, and th(‘ assumption is proved

invalid. Unless external constraint against bending in the ./T-plane is

provided, we must c()nclude that tiending cooplCvN in the .n/-p\ane produce

also some bending in the .rz-plane.

VVe now proccinl to develop a more genin’al llie(>rv of l^ending of pris-

matic beams of arbitrary rroas-turtion. In iMg. (>.10, let such a beam be

subjected to pure bending and assume that plane cross-sections before

bending remain plane aft(‘r bending. 'Fhen for the conditions shown, all

longitudinal fibers above a certain line nn in the cross-soUion will be in

compression, and all fibers below this line will be in tension. The line

nn represtuits the neutral axis of the section. Through any point 0 on

this line as origin, we take coordinate axes x, //, z, such that Ox is parallel

to the axis of the beam and the plane xy is the plane in which the external

couples Mz are acting. We have already observed that such couples will,

in general, produce bending of the Ix^am both in the xy-plano of loading and

Fig. 6.16
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in the perpendieiilar .i:^-plane. Let 1/p^ denote the (’urv'ature in the xy~

plane and l/p^, that in the r^-plane. Then plane cross-sections before

bendini^ remainiiip: plane after bending, the strain in any longitudinal

fiber, defined \)y coordinates //, 2
,
will be

For elastic behavior, stress is proportional to strain so that

Ey
,
Ez

fj
1

Pz pu
(a)

This defines the stress distribution over the cross-section and since the

stress resultant must reduce to a couple M

^

about the 2-axis, we have

adA = 0, an dA = M.,
j

az dA = 0. (b)

Substituting the value of a from cq. (a) into these (‘(luilibrmm ecpiations,

we obtain.

wh(^re

— Ajjc H— Azc 0,
Pz Pu

pz Py
M.,

Pz Pu

I

h
1
zhiA

y
ly

are moments of inertia and product of inertia of the cross-section and

//c, Zcy are the coordinates of the centroid of its area A.

The first of these three ecjuations is satisfied by taking yc = Zc ~-= 0\

hence we conclude that the neutral axis passes through the centroid of

the cross-section. From the last two equations, we obtain

1 _ MJy 1 MJy,

P. Eilyl, - V)’ Py
“ E{Iy.^ ~ lyL)

(6 .8 )

Tliese expressions define the curvatures in the sy and xz planes, respectively,

due to Ix^nding couples applied in the x^-plane as shown in Fig. 6.16 b.

We note tint when xy is a plane of symmetry, lyz = 0 and l/py = 0,

while 1/pa = Mz/EIj which coincides wdth eq. (5.4) of Art. 5.3.
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Substituting expressions (b.S) tor eurvatures into e((. (a), w't* obtain

^ yjAhn -z

11, -
((>.0 )

wliich gives the bending stress ni any fiber the hu'ation of \vhi(*h is dehnod

by the coordinates ?y, 2 . Agaiti if xy i< a plane of symmidry, == 0 and

ec]. (b.9) reduces to a = M .y /,, which coincides with eip (.Vo) of Art. 5.3.

Setting or = 0 from e(i. (b.9), we obtain, tor th(' ecjuation of lh(‘ neutral

axis,

,
I,y - --= 0

or

lu
~ tan

Idiiis the neutral axis of the cross-section maki^s tlu* angle d — tan ’

(/,/,//„) with the z-axi> as shown in Tig b.lba.

I'or any (‘ross-scauion, it can be shown that there are ah\ ays two ori hog-

onal centroidai axc's in its })lane for \\hi(‘h th(‘ product of inertia J — 0.

These are called the principal axrs of the cross-se(‘tion (see Aptiendix B).

The corresponding axial planes of ihe beam are called the principal plain's

of bending. From the foregoing discussion, we conclude that for bending

moments applied in such a primapal plane, only bending in this plane will

take place and the usual theory of bending is valid. Thus tor a liearu

subjected to Viending moment that is not m a principal [ilaiie, we may
always resolve this bending moment into components (Coinciding with the

two principal planes of the be.im. Then, by .superp(jsition, thr' total bending

stress in, any liber will be obtained by adding algebraically the two stn^s.ses

produced separately by these components. This procedure is illustrated in

the first of the examples following.

Ail of the above discussion holds rigorously only for pure bonding. If a

beam is bent by transverse loads, there will be sh(‘aring stressc's and defor-

mations as well as bending stresses. In the case 01 b(*ams of solid section,

these shearing stresses do not greatly elTect the bending action and it is

satisfactory to calculate the liending stresses as above without considora*

t ion of the shear. In the case of beams of thin-walled profile section, such as

the Z-section shown in Fig. 0.15, the slu^aring str^^sses are of especial inter-

est, and this question will be considered further in Art. 0.5.

uxAMi’LK 1. A sin.ply supported wood beam (roof purlin) of rectangular cios.s-

section ftirrk'a a uniform load of inteasitv to as shown in Fig. 6.17. The plane ot

symmetry x02 of the beam is inclined to the \'ertieal .^//-plane of loading by an

angle cY as shown. Calculate the maximum bending stress a-,,.,.* »f / ^ 10 ft, w = 2(X)

lb per ft, ft == 6 in., ft — 8 in., and tan a = J.
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SOLUTION. TIk' maximum bonding inomont at the middle of the span is

_ ivr^ 200 X 120^
" ~

8
~

12 X 8
80,000 in.-lb.

Tlio comj)OTionts of this bonding moment m th(‘ two planes of symmetry of the beam
arc Ml - eos a = 30,000 X 0.910 - 28,500 in.-lb and M 2

~ ^V„iax sin a
= 30,000 X 0.310 = 9500 in.-lb. I'hus the maximum bending stress at A or B is

Cr.nRX

28,500 X r> 9.500 X 0

0 X S'' 8 X t)-

()13 psi.

Kx.\MPLL 2. Lo('iite the muitral axis of the eross-seetion for the beam loaded as

.‘^how ?i in Fig. 0.17.

solution. The finncipal moments of imTtia of the cross-seetion with respect to

axes of svmmetr}' 1 and 2 are

h -
iT'

hb^
/n - 0. (0

From A{)p('ndL\ li, ue }la^'e then

,
fi^ I2 f.-h ,— 2(x + 7,2 Sin 2a,

Liz — 2a -f- 1 12 cos 2a.

(f)

Substituting. the \ .a]ues of /j, L>, 1 12 for b ~ 0 in. and h — S m. into eqs. (f), we
find, for a = tan 'Hi^ 18*^20', I., ^ 155.2 in.'‘, and ly^ = 33.0 in.'* Then from

eq. (() 10)

tan i3
= ^ 0.2)64

K)5.2

and i3 — 12° 13^ mea.sured shoun in Fig. 0.17a.

LWMPLE 3. A (aiitilever beam of Z-seetion (Fig. 6.18; is 100 in. long and is

load(‘d at the free end by a force F - 400 lb which acts in the vertical pl^e of the

web Find the maximum bending stress (Tmax-

SOLUTION From a handbook of Z-seidions, we find for this section: /* = 34.4

In.**, }y ^ 12.9 in.\ ^ 14.4 in.^ The maximum bending moment is (Aff)max =
— PI - —40,000 in.-lb. The maximum bonding stress may occur at either point .1
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Fig. 6 . 1 H

or point B. For point A, = —3.00 in., z,j = —3.25 in
;
f(»r i>oii't B, jii,

~ —3.00

in., Zf, = -f*0.25 in. Fsin^ all tlu^so data in (‘q. fO.9), wo obtain

-40,000(- 12.9 X 3 -b J4.4 X 3.25)

34.4 X 12.9 - (14.4)-
-13S0 psi.

-40,00()(-12.9 X 3 - 14.4 X 0 25)

34.

4

"X 12.9 - (14.4)2
“}“7150 j)si.

44nis the lars;est bendin^i: stn^ss oooiirs at point B. 4'his iruiioato.s that tlio luaitral

axir^ of tlio section has approximately th(‘ po.^ition shov\ri in Fig. O.lSh. Fn actually

locate^ this axis, wr use eq. (6.10) and find

- tan"' (1.1 16) - 4S°0S^

PHOBLKM.S

1. A cast-iron l)t\am of tiiangiilar crctss-section, Fig. A, is to subjia'tcd to })im‘

bending by e(aiples apjilii'd at its ends and acting in the .r,//-piano, so as to induce

compression at d . Find tlie sale btmdirig moment if the working stre.sses in timsion

and compres.sion are, re.spectively, cr, 5,000 ])si, (Tc = 8000 psi. The* dimensions

of the cross-section are b — 3 in., /i 6 in. Ans, M — 22,50<^ in.-lb.

Fig. a Ida.

2,' A prismatic steel bar of semicirculai cross- t'ction, I'ig. M, is used as a canti

lever beam loaded parallel to the ^-axis at its free end. Hie lengtli I - 72 m.

r — 1 in., and = 18,(XX) psi. Calculate the .‘^ale load I*. Ans. P — 98 2 lb.
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3. A Wt length of “(iiiartf^r round” of radius r = 1 in., Fig. C, is supported at its

ends and loaded at the middle b> a vertical force P acting parallel to the ^-axis. If

tlie allowable working stress m bending isff„. = ](K)0 psi, what is the safe value of P?
P ~ 0.95 lb.

i. X 0 K 0 X i'in. v^t(‘('l angle section serves as a simply supported beam with an

S-ft span, Fig. D. A c,oncentrat(‘d load P ~ 2000 lb acts at mid-span parallel to the

//-a.xis. Calculate tlie maximum tensile and compressh e stresses induced in the

beam 'J'lie moments of inertia of the section are I ^
— 28.2 in.'*, = -It) ti

in.* cr
1

-- 9420 ])si, tcaision; an — 7380 psi, i‘ompressioii.

5. Ilelc'rrmg to the wood beam of rectangular cross-section shown in Fig. 6.17,

let h - 10 in.. /; ^ 3 in., / ^ 10 ft, a - 30®. Calculate the corresponding safe load

for the ])(\‘un if the working stress = 1015 psi. Am. iv = 100 lb per ft.

6.5 Shcariiigr .Stresses in IJeains of Thin-Walled Profile Section

111 the jneeediiig article we have seen that pure bending couples acting in

a principal plane of a Ix'am produces bending only in that plane. For such

pur(‘ bending, then' are no shearing stresses and the internal stress resultant

on any seel ion is a couple which equilibrates the externally applied couple

at cither end of the beam. When bending of a beam in a principal plane is

produced by transverse loads, there will also bi*. shearing stresses to consider,

as was done in Art. 5.5. In general, the resultant of these shear stresses on

any section will lie a force parallel to the plane of loading but not necessarily

in this plane. Tliis stiuaiion causes some twdsting action on the beam so

that cross-sections rotate about the longitudinal axis during l)ending. To
attain fiimple bending, i.e., bending without twist, it is necessary to apply

the external loads in the same axial plane as that in which the shear stress

resultants' act. The determination of the location of this plane will, of

counse, require a careful examination of the distribution of shear stresses

over the cross-section.

Let us l)vgin with the case of a beam of singly symmetric cross-section

loaded in a plane perpendicular to the plane of symmetry, as shown in
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Fig. ().19a, and assume that the external load P is applied at, such distance c

from the principal plane xy that simple bending without torsion occurs.

The neutral axis of the cross-section then coincides with the z-axis and the

normal stress a at any point in the cross-.section is proportional to the

distance y from the neutral axis. From the discussion of Art. 5.5, we know

that the shear stresses r will be distributed according to a par:;.bolic law

Fig. 6.19

over the depths hi and h <2 of the flanges and that the shear stress in the thin

horizontal web will be negligible. Thus practi(‘,ally all of the shear w'ill be

(“arried by the two flanges. If w(‘ (‘onsider the twT) flanges as separate beams

having moments of inertia I\ and then their curvatures in bending will be

equal if the load P is distributed between them in the ratio and the

shearing forces V\ and Vi wdll then be in the same ratio. This condition wall

be satisfied if the transverse load P acts in the v(Tti(*al plane such that

Thus, to obtain simple bending, the load P must be applied in a plane that

lies between the centroid C and the stiffer flange. In the limiting ease, Fig.

6.19b, where there is only one flange, w^e may take /. = 0, and (‘onchuie

that b\
—

0. Thus, for simple bending of a T-sectioii perpendicular to its

plane of symmetry, the load P must be applied in the middle plane of the

flange as shown. That point 0 in the cross-secturn, in each casi^, repre-

senting the point of application of the shear stress resultant, is called the

shear center of the cross-section.

In general, the location of the shear

center for a solid cross-section of arbitrary

shape (Fig. 6.20a) is a complicated problem.

Fortunately, it is not so important for

beams of such solid sections because they

have considerable torsional rigidity and

twist very little during bending by loads Fig. 6.20
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acting through the c(Mnroid C. Hence in our further discussion, we shall

consider Qiily the ciis(^ of an arbitrary thin-walled profile section as shown

in Fig. 6.20b.

We begin with a beam of such cross-section loaded parallel to one of its

two principal planes, say xy, so as to undergo simple bending in this plane,

Fig. 6.21. Then the 2-axis becomes the neutral axis and the normal stress a

in any longitudinal fiber, the location of which is defined by coordinates

//, 2
,

is simply

(T

M.y
L

(b)

Isolating an element A f)f the wall between cross-sections x and x + dx^ and

of arc length .s, we see that normal stress resultants and Nx + dNx will

act on its transverse edges as showm. The bending moment at x + dx being

larger than that at x, there will be a net force dNx in the positive direction of

the .r-axis, which induces shear stress t along the inner edge of the element.

Since the wall thickness t is assumed small, this shear stress can have no

transverse component and must act parallel to the x-axis. The outer edge

of the element is a free surface and carries no shear stress. Thus for equilib-

rium of the element in the x direction, we must have

T t dx = dNx*

Now using eq. (b), we conclude that

(c)
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This cxproasioii, analogous to o(j (5 0), givt's t}i(' shoar stu'^s at any point

in the wall distanee .s from the free edge. Since ihe integral thi^rein is a

Innetion of .s\ >ve eonclude that this horizontal sl)(‘ar stress between adjacent

fibers varies w ith tlie distance s-, Ixanga maximinn at I Ik' lamlral plane and

zero at ea<‘h free edg(‘,

hroni the requirement for equality of complementary sla^ar stresses (s(?e

p. 30), we may now- conclude that there must b(‘ tlu^ same shear stress

distribution in lh(‘ plaiu^ of the cross-section as shown in Fig. 0.2 lb. Again,

since the wall thickn(\ss t is assum(‘d small, these shear stresses in tluj plane

of the cross-section must act in the tangential dire(rtion at each point. The

shearing strt'ss per unit length of the center line AB of the section is

and this is sometimes called the shear flow.

Considering now' the equilibrium of that portion of the beam between any

(Toss-section :r and the free end, it is seen that the elemental shear forces

rids over any cross-section must reduce to a force Vx parallel to the i/-axis.

This shear force wdll act through a point 0 such that its moment about the

centroid C is equal to the sum of moments of the elemental forces about this

same point. This ivxitiirement will enable us to locate the shear center 0 for

any specific cross-section. The beam undergoes simple bending without

twist only if the load P at the free end acts through the shear center of th(*

end cross-section.
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LXAMPLK I. A l)e.‘un ha\'in^^ a thin-wallcd chanm^l 8oction as shown in Fig. 6.22a

is loaded in a v^erticnl plane' parallel to the web so as t<j produce simple bending in

this ])lane. Find the distance r defining the location of the shear center 0 of the

section.

(a) (b) (c) (d)

Fio. 6.22

soLU'i roN. Since the* wall thickness t is small, the shear stresses in the flanges will

1 h* horizontal, and those in the web vertical, as shown m Fig. 6.22b. The resultant

shear force for the wt'b alom* will lie a vertical force coiniuding with the middle line

(d the web, and its magnitude must be equal to the total shear force I" on the entire

section. This is shown in Fig 6.22e. To find the n'sultant slu'ar force for eith'‘,r

flangi', \\T min t first find the intensity of shear stress at any point .<? of a flange.

Jieferring to Fig. 6.22b and using eip (6.11) this beeomes

Then the n'sultano shear force Q for (uther flange bi'cumes

(e)

TIk'sc horizontal slK'ar sfiess n^sulUints for the flanges act along their middle lines

as shown in Fig. f> 22c, and constitute a counter-clockwise coupli' of moimmt Qh.

This couple, togetlu'r with the vi'rtical shear fore(‘ V coiueiding with the web. are

statii’ally equi\ak‘nt to a vertical force I acting through a point 0 in the plane of

tlu‘ cross-section as .shown in Fig, 6.22d. Thi.s ])oint 0 is the reipiirial shear center

and its distance c ff-om the middle line of the web is found from thi' ndation

from which

IV - Qh,

^Qh ^ hViH
~ V

^
U

'

(0

The beam will und(‘rgo simple bending in the principal plane piarallel to the web
only if the plane of loading is removed from the plane of the web by this distance e.

.As a specitii* example, consider tlie case of a standard 10L120 channel section.

Then from Table B.4 of Appendix B, we find h ~ 9.56 in., b — 2.74 in., t = 0.436
in., I = 78.5 in.'* Substituting these data into eq. (f),

(2.74) ^
(9.56) ^(0.436)

4 X 78.5
= 0.952 in.
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EXAMPLE 2. A boain hax'in^ the thin-wallo*! sfmiciroular cross-section shown in

Fig. 6.23 is loadofi in a })rinc i)X‘ii plane .?•// su as to ^jn^duce simph' bending in this

plane. Find the distance e d('finiiig th(* location of the shear center 0.

SOLUTION. The shear stress r at c^ach point 'j = r0 along the middle line of radius
r will be in the direction of th(‘ tangent to this line as shown. From eq. (6.11), its

magnitude is

V
.

r P 172
r = y- / 1/ aA = T-. / r cos \p • trd\l/ = j

— sin

Wv nob^ that this slaair stress is a maximum when 0 - tt/ 2 and zero for 0—0 and
for 0 = TT. The (ior responding ehmamtal sheai force is rtds = Ttrd<p and its moment
about point C is rtr'dl(f). The sum of these* moments o\(t the entire cross-section

becomes

7 ^ -
-K.i:

sill <t>a<t>
“

- y
-•

riie horizontal ^lomponents (A the elemental shear force's rtrchp above the neutral

axis Caiiool th(' liorizontal components of thovse below the nc'utral axis; h(*nce, the

shear stress resultant is a verti(;al force equal to the shf*ar V at the .section. To
prodiH'e the twisting moment T, caleulatial above, this force must act through a

point 0 such that

from which,

2VrH
V{r + e) T-----

(g)

, „ , , ,
'^7'H

rH cos® 0a0 =
2

where
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Substituting? this value' of f, into eq. (g), we find

PROBLKMS

1.

Provo that lor simple Ix'iidinji ol a beam of angle section with equal legs

(Fig. A), the shear center axis Ox is defined bv the lint* of intersection of the two
planes of the l(*.gs.

Fig. a Fio. B Fig. C

2. C^alculate the distance e from the plane of the web to the shear center 0 of the

channel section hi Fig. 6.22 if the section is a standard 6lJ8 2. e — 0.780 in.

3. Prove* that the shear center 0 for the balanced Z-section shown in Fig. B
coincides with its centroid t\

i. Locate the shear center 0 for the unbalam'cd I-section shown in Fig. C, for

simple liending iti the plane of the web. Arw. e = 0.41 in.

5. Locate the shear center O for the C -section shown in Fig. D, for simple bending

in the plane of the web. c = 0.55 in.

6. Locate the shear center 0 for the circular sector shown in Fig. E.

Am. e
^ sm Of — a cos a
2r : r.
a — sin Of cos Of
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6.6 Bending Stresses in Curved Beams

In this section we consider briefly the theory of pure bending of an

initially curved bar within the elastic range, l^eferring to lug. r).24a, con-

sider a short portion of a curved bar acted upon by couples of moment M in

the plane of initial curvature. Such bending moment which tends to

decrease the initial curvature' will be considered as positive. Each cross-

section of the bar is assumed to have an axis of symmetry wliich lies in the

plane of initial curvature. The locus of tin; centroids then is a platan curve

(‘ailed the center line of the bar and its radius of curvatun' is denoted by K.

(a) (b) (c)

Fig. 6.24

In discussing the stress distribution produced by jnire bending of such a

curved bar, we make the same assumptions as m iIk* of straight, bars,

namely, that transvTr.se (Toss-sect.ions of tin* bar, onginall^’ plane and
normal to the (Tuter line, remain so after bending, bet ah and cd denote two

neighboring cros.s-sfM?tions of the bar and let d(t> dmiott^ the small angle

between them before bending. As a result of bending, the cross-section cd

rotates with respect to ab. Let Adtp denotf* ihe small angle of rotation.

Due to this rotation, the longitudinal fillers on the c'onvTx sid(‘ of th(‘, bar

are compressed and the fil>ers on the concave side are extended. If n-n

denotes the neutral surface, the extension of any fiber at the distance y

from this surface is y(Ad4)) and the corresponding unit elongation is

(r - y)d<t>
(a)

where r denotes the radius of the neut.ral surface and the denominator in

eq. (a) is the length of the fiber between the adjacent cross-sections before
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b>ending. A.ssuniing that then* is no lateral pressure between the longitu-

dinal fibers, * the bending stress at a distance y from the neutral surface is

, . (b)
(r - y)d<i>

LOq. (b) shows that the stress distribution is no longer littoar as in the case of

straight bars, but that it fcdlows a liyperbolic law as slu)wn in Fig. 0.24c.

From the condition that the sum of the normal forces distributed over the

fToss-seetioii is zero, it can be concluded that the neutral axis is displaced

from the centroid of the cross-section towards the (*enter of curvature of the

bar.

In the case of a rerJnngaUu' cross-section, the shaded an^a (Fig. 0 24c) in

tension must ecpial that in compression; heiuv the greatest bending stress

acts on the concave side. In order to make the stresses in the most remote

fibers in tension and in compri'ssion equal, it is necc'ssarv to use sectional

shapes which have the centroKl nearer the concave side of tlu* i)ar.

Kq (b) contains two unknowns, th(‘ radius r of th(' neutral surface' and

the angle' whitdi r(‘pre.sents th(‘ angular displat'cmfuit due to bending

To determine them, we must use two equations (4 statics. The first e(|i:a-

tion is based on the condition that the sum of the normal fon'cs distributed

over a cross-section is eijual to zero. The si'cond equation is based on the

condition that the moment of these normal forces is equal to the bending

moment M. Thus

fadA
_ EiAd<f>)

-0, (c)

J 'i<i> J
r r - y

l<Ty
dA

<J
11

f
»'''' . ij.

f r - y
(d)

The integratior in both equations i.s extended over the total area of the

cTos.s-section

Eq. (c) enables one to determine r and, in turn, the distance y (considered

a positive quantity) from the centroidal axis to the neutral axis of the cross-

section. Let V represent the distance from the center of curvature to any

element dA; then y - r — v, and e({ (c) can be written

from which

-*• v)dA

V
= 0

,

(6.13)

*The exact theory shows that there is a certain radisl pressure but that it has no sub-
stantial effect on the stress a and can be neglected.
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or

y = R- (6 . 14 )

where R is the initial radius of cuivature of the center line ol the bar.

Eq. (d) may be used to obtain a formula for the fiber stresses in terms of

the bending moment. The integral in eq. (d) is first simplified as follows:

(o)

The first integral on the right side of eq. (e) represent.s the moment of the

(Toss-sectional area with respect to the neulral axis, and the second, ns is

seen from eq. (c), is equal to zero. Hence

fi/ijA

J r - If

Ay, (f)

Eq. (d) then hei‘omes

7£(Ad0) ^ M_

<i<t> A Tf

Substituting this in ecp (b),

Ay(r - y)

The stresses in the most, remote fib<»rs which an* the maximum stres.ses m
the bar are

^ in fix

Mh,
Aya

and Cm I n

Mhj
Aijc

(6 . 15 )

in which hi and are the distances from the neutral axis to the mo.st remote

fibers, and a and c are the inner and outer radii of the bar.

So far we have considered the case of pure bending wdiere the bar is

subjected to end couples only. In a more general case wdien a curved bar is

bent by transverse forces ac ting in its plane of symmetry, the forces acting

upon the portion of the bar to. one side of any cross-s(*ction may be reduced

to a couple and a force applied at the centroia of the cross-section. The
moment of this couple equals that of the external torces with respect to the

centroidal axis of the cross-sc^ction. The stres.ses produced by the couple are

then obtained as explained above. The force is resolved into tw^o compo-
nents, a longitudinal force N in the direction of the tangent to the center

line of the bar and a shearing force V in the plane of the cross-section. The
longitudinal force produces tensile or compressive stresses uniformly distrio-
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utf*d (A or tJio cross-sort ioii and equal to S/A. To g;et the total axial stress

acting in any fiber, this uniform stress is added algebraically to the stress

caused by the couple. The transviTse force 1' produces shearing stresses

and th(‘ distril.iution of these stresses over the cross-section can be taken the

same as for a straight bar.

KXvvMi’Lh 1. D(‘tcrrnine the numerical value of the ratio for the cawse of

:i curved beam of rectangular cross-section in |)urc bending if R = 5 in. and /i = 4 in.

souiTioN. Erorn cfis. (b.lo)

^inax h\C
^

^iiiiji h 2O
(h)

where — h/2 — y and //.- ~ h 2 T V (se(^ Fig. 6.24b). d'o calculate y, we use

(‘q. (6.14) in wliicli

Thus

y R - hi,

O.H476
5 — 4.72 = 0 2S in

'I'hen hi - 2 — ().2S 1.72 in. and -= 2 4- 6.2S 2.28 in, A\'itli the.sc value.-'

of hi and //'j, (‘(|. (h) becoiiK's

l./2X^ ^

F:\AMrLi 2 \ ciir\ <‘d b(‘ain \s ith a circular center line has the invented T-section
shown in Fig. 6.2o, and is ^ubjeeb'd to pure biUKhng in its plane of symmetry. Find
the dimiaision h\ m ordor b) ha\e (‘(pial teiisil(‘ and comjire.ssive stn^sses in extreme
fibers.

soijjTioN. Sin(‘(‘ v\e re(iuire
| |

-
]
aunn

I
, it follows from cqs. (6 . 15 ) that

(I r
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from which

b
h‘2

I’hen since Ai + //> - 4 in., we find hi = 1.2 in., //«.. = 2.S in. This locates the

neutral axis of th(' cross-section and its radius r « -f // . 3 + 1.2 = 4.2 in.

This radius of tli(* neutnil axis is also defined by ecj. (6.13) wherein

^ I (0 (0
" ^

so that

"h 3

/'
dA

V

0.28Sf>, -f 0.5G0
= 4.2 in.

This gives hi
— .3.09 in.

EXAMPLE 3. A semicircular curved bar is loaded as shown in P'ig. 6.26a and has

the trapezoidal cioss-section shown in Fig. 6.26c. (’alculate thi' tensile stress ai at

point 1 if a = ^ = 1 in. and I* = 1000 lb.

SOLUTION. Considering that portion (d the bar abov<' the section 1-2 (Fig.

6.266), wo see that the* stress resultant on this .si'ction consists of a force P acting

at the centroid of the section and a bending moment .1/ - PR where R is the radius

of tlie centroidal axis. The extreme fiber stress at point 1 due to the moment M
will be given by the first of ec^s. (6.15). and that due to the force P will be simply

P/A . ddius the total stress at point 1 is

<Ti =
PRhi P
A [fa 1

(i)

For the gi\'en cros.s-scction (see Fig. 6.26c) we find

d = X /, 2<* -

R =hjl iMv

\bh

bbbzJbi
S)ch

14

dA h b.
^

1.

Ja V eja r. 2

= ft -
14

9

-14

1^
'

o
'

/ti ft - a - z/
- — - 1

-
18

I .

2“‘-

Substituting these numerical values into eq. (i), we obtain

(Ti =
1000 X Hi; XJ ^

nm
.

i X /18 X 1
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PROBLEMS

1. Determine the numerical v'aJue of the ratin /r f
beam of circular cross-section in pure bendine if /? in

^ curved

cross-section is 4 in. A ns. = l.s/
’ diameter d of the

«ho\„^in rlg'.'^A'^aTd ^slbj/cief?
""‘‘7 'T trapezoidal eross-«.ction

face 6. ia the e side^7 btr'if f-Ti
" '

of base widths so that the extreme fiber
'• ^

will be numerically equal. Ans. b,/hi = I.S7
*” tension and compression

ioaderrwVrCB. ^L'^lSd^JSt
^ pjrr-‘-"i£

"* “ *»" '» r*- c-



CHAPTER VII

ANALYSIS OF PLANE STRESS AND
PLANE STRAIN

7.1 General Case of Plane Stress
/

In preceding discussions of beams bent by transverse loads, we have

seen how an element of material in the beam can be subjected to both

normal and shearing stresses on its edges as shown in Fig. 7.1a. A similar

situation will occur in the case of an element of a shaft subjected to axial

loads and twisting moments as shown in Fig. 7.1b. Such a state of stress

Fig. 7.1

on the edges of a rectangular elemiuit in which there are no stresses normal

to its face is called j)lanc stress. After Mich normal and shearing stresses

as those shown in Fig. 7.1 have been found, it is frequently necessary to

examine further the state of stress within the element to find the magnitude.s

and directions of maximum stresses.

I^et us consider now the general case of an element under plane stress

as showm in Fig. 7-2a. The normal stress in the .r direction is denoted

by <Txj that in the y direction by ay, and tension is considered positive.

The shear stresses on the edges of the element that are normal to the

x-axis are denoted by Txy while those on the edges normal to the t/-axis are

denoted by ry*. The shear streseses r^y, having a clockwise sense of rotation

about a point inside the element, are to be considered 'positive in accordance

with our previous rule (see p. 28). The shear stresses ry., having a counter-

173
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clockwise 8ens<^ of rotation, are negatwe. From the requirement of equality

of complementary shear stresses (see p. 30), we have Tx// = —Tyx. Because

of this equality of orthogonal shear stresses, it is customary to use only

one notation Tj,y for these stresses without regard to order of subscripts,

but in so doing, it is necessary to remember that shear stresses giving

counterclockwise rotation are to be treated as negative.

niven the state of plaiu‘ stress shown in Fig. 7.2a, the normal stress

Gn and th(‘ shear stress r on any plaiu* whose normal n makes the angle <#>

with the .r-axis can easily he found from the equilibrium conditions of the

triangular el(*meiit shown in 1^'ig. 7.2b. l^et the area of the inclined face

of this element he cienoted hy d4„; then the areas of the other two faces

are fMx = d. 1 „ cos and dAy — dA,, sin 0. Multiplying the various

stresses hy the areas of the faces on which they act, the total foiX'es on the

triangular (‘lement will be as shown in Fig. 7 2h. Then for eciuilihrium in

the n direction, we must have

CndA n - GjiA n cos'^ 0 + G A n siiF 0 — 'Ij^ydA ,, cos 0 sin 0. (a)

Similarly, for equilibrium in the direction perpendicular to n, we rmist

have

rdAn = GjdAn cos 0 sin 0 — GydAn sin 0 cos 0 + rxyd^„(cos^0 — sinVh

(b)

Equations (a) and (h) are readily reduced to

Gn = Gx COS“ 0 + (Ty sin^ 0 — 2rry SlU 0 COS 0

~ ^ 4" Gy) + ^ (gx — Gy) cos 20 — Txy sin 20,

T — {gx — Gy) sin 0 cos 0 + 7xy(cos2 0 — sin^ 0)

=" ~ Gy) sin 20 + Txy cos 20,

which are analogous to eqs. (3.2) in Art. 3.2.
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To find the lo(*ation of the plane of maximum normal fstress crn, we
make the derivitive d(Tnld<i> = 0 from the first of eqs. (7.1) and obtain

— {oj — (Ty) sin 2<i>
— 2Txy cos 20 == 0, (c)

from which

tan '24 = (7.2)
C^x

This condition defines two values of 20 differing by 180° and hence two

values of 0 differing by 90°, For one of these values. a„ is a maximum
and for the other, a minimum.

Considering the second of eqs. (7.1) and setting the shear stress t equal

to zero, we again obtain eq. (c). From this, it may be (‘oiicluded that on

those planes where Cn is a maximum or a minimum the shear stress r

vanish(‘s. The corre.sponding normal stresses (anj,„ax and (a-n)min are

called 'principal stresses^ and the planes on w'hich they act are (tailed

principal planes of stress.

Ueferring to the second of eqs. (7 1) and s(‘tting dr/dtii = 0, we obtain

{<Tx i^v) COS 20 — 2Txy siii 20 = 0, (d)

from which

cot 2</> = f- - (7.3)
<Tx (Ty

Comparing this with eq. (7.2), w'e see that the maximum shear stresses

occur on orthogonal planes Vnsecting the angle between principal planes,

i.e., at 45° to the planes of principal stress as already concluded in Art. 3.2

To evaluate the maximum normal and shear stresses in the element,

it is necessary to replace 0 in eqs. f7.l
) by the values defined by eejs. (7.2)

and (7.3). Because of the transcendental character of the equations, this

becomes somewhat involved and, for this purpose, it will be simpler to

use Mohr\s circle.

The general case of plane stress is shown again in J-'ig. 7.3a. To construct

Mohr^s circle for this case, one proceeds as follows: Lay out first the

coordinate axes a and r with origin at 0 as shown in Fig. 7.3.b Then to

locate the point I) representing the stress conditions on the x-plane, i.e.,

the plane normal to the .r-axis, lay off the value of Ox as abs(dssa OF and

the shear stress Try as a positive ordinate FI). '>ext, locate the point Z>i,

representing the state of stress on the //-plane, by laying off the abscissa

OFi to represent the normal stress and the negative ordinate F\Di to

represent the shear stress — Txy. Since the x- and y-planes are orthogonal,

the corresponding points D and Dy on Mohr's circle are 180° apart and
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represent the ends of a diameter. Connecting these points with a straight

line locates the center C on the cr-axis and the circle can be drawn as shown.

The maximum and minimum normal stresses are represented in Fig.

7.3b by OA and respectively. These principal stresses are denoted

hy (^^n) max (Ti and {(Jn)nMu ^ ff2, as shown. To locate their directions in

Fig. 7.3a, we start with point D on the circle, corresponding to the j-plane

of the element, and label this point 0 = 0, as shown. Then to reach point

A on the circle, corresponding to the plane of maximum prinicpal stress,

it- is necessary to pass through the clockwise angle 20rt. Hence, the direction

of ai in Fig. 7.3a is found by laying out, also clockwise, the angle <t>a from

the x-axis, as shown. The direction of <72 is then at right angles to that of

<Ti and the principal planes are located as shown.

Fig. 7.3

In general, any plane through the element whose normal n makes the

angle with the x-axis and the corresponding point E on the circle, repre-

senting the state of stress on this plane, are related in the same way,

namely: the angle DCE in Fig. 7.3b is always double the angle 0 in Fig.

7.3a and is to be measured in the same direction.

Expressions for the principal stresses o-i and 0-2 are easily found in terms

of (Ty, and Txy, from the geometry of Mohr’s circle, Fig. 7.3b, as follows

OA OC + CD ^ ^

c,^0B = 0C-CD =
I

These are the same values which w^ould be found by substituting the value

of 20 from eq. (7.2) into the first of eqs. (7.1) on p 174,

EX^PLB 1. A ^iquare element of a thin plate subjected to plane stress is shown
in Fig. 7.4a. The given stresses on its mutually perpendicular faces are <r, * —500
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psi, (Ty = -hl500 psi, Tjy = = +10(K) psi. Construct Mohr's circle for this

element and find :

(a) the magnitudes and directions of principal stresses <ti and a 2.

(b) the normal stress (Tn and shear stress t on the diagonal plane ab.

(c) the aspect of the plane of maximum positive shear stress Tma*-

SOLUTION. From the origin 0 of the or-plane in Fig. 7.4b, lay off OD' = —500 psi

and D'D = -|- 1 000 psi to locate point />, representing the given state of stress on

the x-plane. Also from 0, lay off 01)^ — -f 1500 psi and D'lDi = —1000 psi to

locate point Di, representing the given state of stress on the y-plane. Connect

points 1) and Di by a straight line to locate the center C of Mohr’s circle and draw
the circle as shown. Alsf) label CD with <t>

— 0 to serve as a reference line. Then the

Fig. 7.4

measured angle DCA — 2</)q = — 135°, negative to show that it is clockwise. Hence

0a == — 67°30' and the direction of the principal stress Oi is as shown in Fig. 7.4a;

the direction of <T2 is, of course, at right angles to this. The magnitudes of a. and 0-2

ar(‘ represented, respectively, by OA = <ti ~ -}- 1910 psi and by OB = <72 = —910
psi, scaled directly from the drawing The same values can be obtained from cqs,

(7.4) by substituting therein the given numerical values of ctx, Oy, and Txy, with due

regard to signs.

The normal to the plane ab which bisects the angle between the x- and yy-planes

is seen to make an angle 0 = —45° with the j-axis. Hence from the reference point

D in Fig. 7.4b, we measure off the angle DCE = 20 = —90° to locate point E,

representing the state of stress on this plane. Scaling the coordinates of point E, we
find (Tn = 4-1 500 psi and r = -h 1000 psi.

Reference to Fig. 7.4b shows that point F on Mohr’s circle reprcvsents the plane of

maximum positive shear stress in the element. Then since the angle DCF measures

20 = —45°, the plane of this maximum positive shear stress is defined by 0 =
— 22°30' as shown in Fig. 7.4c. The magnitude of this maximum shear stress is

Tmax = CF = 1410 psi, scalcd from the drawing. As a check, it will be noted that

the angle between planes of prirtcipal stress and planes of maximum shear stress is

07°30' — 22°30' = 45° as it should be.

EXAMPLE 2. Fig. 7.5a represents one element of a plate in a state of plane stress

and Fig. 7.5b, the corresponding Mohr’s circle. Point D on this circle corresponds

to the x-plane, point Di to the 2/-plane, and points .1 and B, to the two principal

planes. Point D' is vertically below D and point D’l, vertically above Di. Show
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y

(a) (b)

Fk;. 7.5

that tho si(J(*a of tlio rectangle Aiy iBD' represent the directions ot p)rincipal stress

in the element.

SOLUTION. Since dR is a diameter of the circle, it follows that AD'B and D'BIY

^

are right angles. iVlso, since the arc ALY is equal to the arc DA, the angle ABD^ i.s

equal t^) lialf the angle DCA . I'ha.s the angle ABD' = 0^, which defines the direc-

tion of the principal .stress <7i, a.s shown. This simple construction furnishes a
convenient way to find the' directions of principal stresses from Mohr’s circle.

PROULKM.s

iT For the rectangular element .shown in Fig. 7.4, th(; following data are given:

Gx = 5000 j)si, (Ty = 3000 psi, and = 750 psi. Determine the magnitude's and
directions of th(' two principal stre\ss('s ay arui Am. 0i — “•18°20'; uy — 5250
psi.

Find the magnitudes and directions of principal stres.se.s for tlie element in

Fig. 7.4 if O’ r
== —hfXlO psi, Oy — 3000 psi, and Txu — 1000 psi. Am. ay — 3120 psi;

0-2 -- —5120 psi: 0a
” — 82®50'.

D)cate the planes of maximum shear stress for the element in Fig. 7.4 if

(Ti +5000 psi, or,/ = +3000 psi and t^u — 750 psi. What are the magnitudes of

normal and .shear stress on these planes? Arts. 0 =
26°34'; On — tr'n = 4000 psi;r,uax = 1250 psi.

4. Find the magnitudes of normal stress a,, and
shear str(*ss r on tlie 45°-piane ab of tho element in Fig.

7.4 if ar ~ (Ty ~ 3000 psi and r^y — 1000 psi. Ans.
an = 4000 i)si ;

r = 0.

5. Construct Mohr’s circle for the element in Fig.

7.4 if (Ti = GTy = 0 and r^y == 1000 psi. What are the

jf
magnitude's and directions of principal stresses in this

case? Ans, ay = — co = 1000 psi;0a = —45®.

6. Construc'.t Mohr\s circle for the element in Fig. 7.4

if a, — —ay — 2000 psi and T^y = 0. What is the

magnitude of maximum shear stress rmax in tliis case?

Ans. Tnia* = 2000 psi when 0 = +45®.Fig. a
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7. A hard rubber cube (ju = 0.5) is completely constrained in the x direction by
the walls of a trough but is free to expand or contract in the y and z directions as

shown in Fig. A. The upper face of the cube is subjected to uniform compressive

stress fjy
— —1000 psi as shown. Find the direction of maximum positive shear

stress Tmax and evaluate the magnitude of this stress. Hint: Sec eqs. (3.5) for stress-

strain relationships in biaxial stress. A ns. r„,ttx = 250 psi at 0 - 45®.

7.2 Principal Stresses in Beams

Consider in l"ig. 7.6 the case of a simply supported beam of rectangular

cross-section subjected to uniformly distributed transverse loading.

Then for any cross-section defined by the distance .x from the left support,

the shear force will be

irFx = - WX

and the bending moment will be

A/x
wlx

2

both of which vary with the distance x defining the location of the cross-

section. The normal stress <rx and the shear stress r^y at any distance y

from the neutral surface can be readily calculated from the formulas

developed in Chapter V. Thus, from eq. (5.5)

(Tx (a)

and, from eq. (5.8),

Since Mr and F* both vary with x, these stresses are seen to vary con-

tinuously with both X and ij throughout the l)eam. For any particular

cross-section, the bending stress cr* varies linearly with y and the shear

stress Txy varies parabolically as shown in Fig. 7.6a. For a rectangular

element such as A or B, Fig. 7.6b, the shear stress vanishes and the cor-

responding tensile or compressive stress due to bending represents a

principal stress. For an element C situated at the neutral surface, the

normal stress vanishes and the element is in a state of pure shear. For

such conditions the directions of principal stress are inclined by ±45°

to the.x-axis. For any intermediate element D, there are both normal and

sliearing stresses to consider. These stress conditions for the element D
are shown separately in Fig. 7.6c.
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Fig. 7.6

The state of plane stress shown in Fig. 7.6c is simply a particular case

of plane stress as discussed in Art. 7.1, one of the normal stresses in this

case being dy = 0, Thus to find the magnitudes of principal stress for

this element we use eqs. (7.4), which, with dy = 0, become

<ri,2 = ^

It is seen that in this case the maximum principal stress o-i will always

be positive, i.e., tension, while the minimum principal stress d2 will always

be negative, i.e., compression.

The directions of these principal stresses will be found by using eq.

(7.2) which, with dy = 0, becomes

tan 2* = (7.0)

For known values of o-, and T*y, this gives two values of 0 which locate

the directions of principal stresses di and d^ as shown in Fig. 7.6c.

Applying eq. (7.6) to elements A or 5, we have = 0 and obtain

tan 2^ “ 0, yielding 0i =* 0, = 90®. Thus at the lower and upper free

surfaces of the beam, the directions of principal stress coincide with the

.T- and
2/-axe8 as anticipated above. For the element C at the neutral

surface, tr, = 0, and eq. (7.6) gives tan 20 = —
,
yielding 0 = ±45®
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Thus, for points in the neutral surface of the beam, the directions of

principal stress cross the x-axis at ±45° as already anticipated.

By calculating <t> from eq. (7.6) for a number of points defined by co-

ordinates X and y, it is possible to construct two families of orthogonal

curves whose tangents at each point coincide with the directions of principal

stresses at these points. Such curves for the right half of the beam under

uniform load will be as shown in Fig. 7.6a. They are called 'principal

stress trajectories. The solid line curves represent tensile stress trajectories

and the dotted line curves, compressive stress trajectories. Both sets of

curves cross the x-axis at 45° and always cross each other at right angles.

They terminate in the upper and lower free surfaces normal to the axis

of the beam.

In beam design, one usually wants the numerically maximum values of

normal stress o-„. From eq. (7.5) it can be seen that for the most remote

fibers in tension, where the .shear stress is zero, the longitudinal normal

stress (Tx becomes the principal stress. For fibers nearer to the neutral

axis, the longitudinal fiber stress ax is less than at the extreme fiber; how-

ever, we now have a shear stre.ss Txy also and the stresses a* and tzv acting

together at this point may produce a principal stress, given by eq. (7.5),

which will be imrnerically larger thari that at the extreme fiber. In the

case of beams oi rectangular or circular cross-section, in which the shearing

stress Txy varies continuously over the depth of the beam, this is not usually

the case, that is, the stress ((rx)max calculated for the most remote fiber

at the section of maximum bending moment is the maximum stress acting

in the beam. However, in the case of an I-beam, where a sudden change

occurs in the magnitude of .shearing stre.ss at the junction of flange and

web (see p. 129), the maximum stre.ss calculated

at this junction from eq, (7.5) may be larger than

the tensil(‘ stress (o'i)rriax in the most remote fiber

and .should be taken into account in design.

To illustrate, consider the case of a simple beam
carrying a concentrated load P at the middle,

assuming / 2 ft and P = 60,000 lb. The cross-

vsectioii is an T-section as shown in Fig. 7.7; h = 12

in., hi = 10.5 in., 6 = 5 in., and 6i = 0.5 in.,

/, = 286 in.^ Then Mmax = 30,000 ft-lb, F^ax =

30,000 lb. From eq. (a), the tensile stress in the

most remote fiber is Fig. 7.7

,
30,000 X 12 X 6 .

(^x)max — 286
7550 psi.

Now for a point at the junction of flange and web, we obtain the following
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values of normal and shearing stresses:

cr, = 7550 X^ = 0610 psi;

Txy = 4430 psi.

Then from eq. (7.5), the principal stress is

{<Tn)nnxx = 8830 psi.

It is seen that (<Jn)inax at the junction betw(‘en flange and web is larger

than the tensile stress in the most remote fiber and therefore should be

considered in design.

PROBLKMS

1. For the simply supported I-beaiP disoussed on p. 181, dotennino the span

length I such that (<r„)max at the junction between flange and web will be equal to

(<rj)inax in an extreme fiber. Ans. I = 39.8 in.

2. A cantilever beam has a rectangular cross-section of width h — 4 in. and deptn

A = 8 in. and carries a load P = 2000 lb at its free end. Calculate the magnitude
and direction of the principal compressive stress for an element situated midway
between the neutral surface and the bottom free surface in a cross-section 3 ft from

the loaded end of the beam. Ans. a 2 = --850 psi; </> = 4®44'.

10”

3. The beam shown in Fig. A carries a load P = 10 kips. Construct Mohr's

circle for stress on an clement at A and find the magnitude and direction of the

principal tensile stress cri at this point. Ans. a i
~ 194 psi; = — 31°30'.

4. If the beam in Fig. A has an 8WF20 wide-flange section and the load P — 25

kips, calculate the maximum normal stress induced in the beam. Ans <ji = 21,800

psi.

5. Write the differential equation for the family of principal stress trajectories

for the cantilever beam of rectangular cross-section shown in Fig. B.
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7.3 Stresses Due to Combined Bending and Torsion

One of the most important applications of the theory of combined

stresses arises in the case of shafts subjected to both bending and torsion.

Consider, in Fig. 7.8, a portion of a shaft of circular cross-section acted

upon at its ends by bending couples M in the x|/-plane and by twisting

(^ouples T about the .r-axis. Under such loading, an element A in the top

surface of the shaft will carry normal stress ax due to bending, and shearing

stresses Txz due to torsion. I'hese stresses are readily computed from eq.

(5.5) and from cq. (4.5). Thus, wo have

Me 32M
(a)

ird^

Tr ler

7rr/»’

(b)

where d is the diameter of the shaft.

The element A is seen to be in a state of plane stress and the principal

stresses will be found from eqs. (7.4) of Art. 7 J . Thus the principal normal

stresses are

(7.7)

The maximum shearing stress, equal to half thc^ difference between principal

stresses, is

ITIOX (7.8)

In the design of a shaft to carry a given loading, allowable working

stresses in tension ((»r compression) and in shear will usually be prescribed.

It then becomes necessary to find out from eqs. (7.7) and (7.8) which of
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those stresses governs the design and then to select the required diameter

d of the shaft accordingly. For a brittle material like cast-iron, the maximum
normal stress ax should be used, while for a ductile material like structural

steel, the maximum shear stress rmax is most commonly used.

To find the reciuired diameter d of the shaft, it is necessary to substitute

expressions (a) and (b) into cqs. (7.7) and (7.8). Doing this, we obtain

<7. = ^ {M + yiiP + r=) (7.7a)

and

r„.ax = ^ ylM^ + T\ (7.8a)

Then to select the diameter d on the basis of an allowable working stress

Ow in tension, we use eq. (7.7a) which gives

d = {I-- {M + (7.9)
\ TTCtif

{Similarly, to select the reciuircd diameter d on the basis of an allowable

working stress Tu. in shear, we use eq. (7.8a) and find

d = W— (7.10)
\ TTTifi

If allowable stresses in both tension and .shear are prescribed, we calculate

d from both ecjs. (7.9) and (7.10) and select the larger value.

Usually the bending of a shaft will be produced by transverse forces

rather than by bending couples as shown in Fig 7.8. In such case, we have

to con.sider also shearing stresses associated with noii-uniforin bending.

As observed in Art. 7.2, the.se shearing stresses usually vanish at those

points where the normal stresses due to bending are a maximum so that

they do not influence the maximum principal stresses and can be dis-

Fig. 7.9
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regarded. However, when bending by transverse forces is combined

with torsion, some consideration of the shear stresses associated with

bending may be necessary. Consider, for example, the shaft loaded as

shown in Fig. 7.9. In such case, a surface element A on the front side of

the shaft will sustain shearing stress

(c)

due to the torque T and also shearing stress

^ ^ SA

due to the transverse load P. Thus the maximum shear stress Txy =

+ t'" Even though the normal stress Ox for this element vanishes,

it might be in a worse condition than an element B at the top surface.

EXAMPLE 1. A steel shaft supporti^d in bearings at A and B and carrying pulleys

at C and D, is to transmit 100 hp at 500 rpin from the drive pulley I) to the offtake

pulley C as shown in Fig. 7.10. The following numerical data are given: Pi = 2P 2 ,

Q\ = 2Q 2 ,
Pd = 6 in., Pc = 8 in., / = 4 ft, a = 1 ft, and the working stress in shear

is Tte = 6000 psi. Calculate the required diameter d of the shaft.

SOLUTION. From eq. (4.7), p. 73, the torque required to transmit 100 hp at

500 rpm is

500

Then since T = (Pi — P 2) Pd we find, with the given data,

Pi = 2P 2 = 4200 lb.

Fig. 7.10
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Similarly, T - {Q\ — Q 2) from which

Q, ^ 2Q, = 3150 lb.

With these values of the loads determined, we turn our attention to the bending

moments in the shaft caused by the transverse loads. It will be noted that the shaft

undergoes bending both in the horizontal jr^-plane and the vertical jy-plane. The
corresponding l)eriding moment diagrams are shown in Fig. 7.10b. A study of these

diagr3,ms shows that the maximum bending moment in the shaft will occur either at

cross-section B or at cross-section C. The bending moment at B is

Mu = (Pi + P 2) a = 6300 X 12 = 75,000 in.-lb.

At C, the bending moment in the vertical plane is

700 in.-lb,

while that in the horizontal plane is

^ X 24 = 37,800 in.-lb.

These two bending moments in orthogonal axial planes of the shaft may be added
vcctorially and we obtain

Mr = = V‘i6.44(10)« = 68,200 in.-lb.

This resultant ixmding moment at C being slightly smaller than that at B and the

torque T being the same at both these cross-sections, we conclude that an element

on the front side of the shaft at B is the critical element. Substituting M = 75,600

in.-lb, T = 12,600 :n.-lb, and Tu- = 6000 psi into eq. (7.10), we obtain-

d
16

OOOOtt
V(75,600)2 4. (12,600)2

sjie X 76,700

\ eoooTT
4.02 in.

EXAMPLE 2. A 2.5-in.-diameter shaft carries a 30-in.-diameter pull(\v wcigliing

500 Ib (Fig. 7.11). Talculate the principal tensile stress at the section mn if the belt

tensions aie as shown.

SOLUTION. At the section mn,

T = (1750 - 250) 15 = 22,500 in.-lb,

Af = 6V(500)2 + (2(X)0)2 = 12,370 in.-lb.

Fig. 7.11
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Then from eq. (7.7a)

<r, = -4^, (12,370 + >/(12.370)* + 22,500)*) = 12,400 psi.

PROBLEMS

steel shaft supported in bearings A and B at its ends carries a pulley at C as

shown in Fig. A. Power is applied by a torque T at A and taken off through a belt

overrunning the pulley, the tensions in the two branches of the belt being as shown.

The allowable working stresses for the shaft are = 12,000 psi and = 6000 psi.

Find the required diameter d of the shaft. Ans. d = 2 in.

Q. A vertical tube built-in at its lower end is acted upon by a horizontal force

P = 250 lb applied at the upper end as shown in Fig. B. Determine the principal

stress Cl and the shear stress if the section modulus for the tube is Z = 10 in.*

Ans. a-

1

= 7530 psi; Tnmx = 3780 psi.

Fig. C Fio. D
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3. Figure C represents an instantaneous position of a portion of a crankshaft, the

force P representing the action of a connecting rod on the crank pin. Find the safe

value of the magnitude of this force if working stresses for the shaft material are

prescribed as follows: Cu ~ 12.750 psi; = 10,200 psi. Ans. P = 660 lb.

4. A hollow steel pipe is to be used as a standard to support a signboard as shown
in Fig. D. The maximum wind pressure on the face of the board is assumed to be

50 Ib/sq ft. The standard is unsupported laterally, and its outside to inside diameter

ratio is 1.12. The allow’able working stress in shear is given as Tu, = 8400 psi.

Calculate the required outside diameter d of the pipe. Ans. d = 5.20 in.

5. A stepped shaft of circular cross-section is built-in at C and carries a pulley at

A as shown in Fig. E. The pulley is acted upon by a vertical force P applied

tangentially to its rim. The shaft is to be designed on the basis of maximum shear

stress. Find the ratio d\/d 2 such that maximum shear stresses will be equal at

sections B and C. Assume I = 12 in. and r = 4 in. A/w. di/d 2 = 0.830.

6.

A shaft of diameter d bent in the form of a semicircle AB of radius R is built-in

at A and loaded at B by a force P perpendicular to the plane of the ring as shown in

Fig. F. Thus an3^ cross-section C of the ring is subjected to both bending and twist.

Assuming that the diameter d is small compared with the radius Ry so that the

theory of bending of straight bars may be used, find the value of 4> for which the

principal stress ai will be a maximum. Arw. </> == 120°.
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7. Referring to Fig, G, calculate the diameter d of the shaft AD required to safely

transmit horsepower under the conditions shown. Assume P1/P2 = 3 and r„ =

6000 psi. Ans. d = 2.49 in.

8. Referring to Fig. H, determine the required diameter d of the shaft to transmit

60 hp at 250 rpm from pulley C to pulley D. The power is applied at C by a hori-

zontal belt and taken off at D through a vertical belt. Each pulley is 30 in. in diame-

ter and the ratio of belt tension on the tight side to that on the slack side is P1/P2 =
3. ylns. d = 2.64 in.

7.4 Plane Strain

Very often the strains induced in an element of material subjected to

plane stress are of practical interest. To completely define the state of

strain in the j-.v-plane of such an element, it is necessary to specify the

linear strains and ty in two perpendicular directions and the change in

angle betAveon these two directions (the shearing strain 7xi/). In Fig. 7.12a,

let OX and OF represent two such perpendicular lines of unit length

coinciding with two edges of the element before deh)rmation. During

deformation, point A' moves to A"' and point Y moves to F' relative to

the origin 0, A' and F' remaining in the plane AOF. Then the strain in

the neighborhood of 0 is completely defined by the two extensions = XX'
and €y = FF^ and by the change yxy in the original right angle A"OF

as it deforms into the final angle X'OY', Extensjonal strains are considered

positive and compressive strains, negative. The shear strain 7*^ will be

considered positive when the right angle XOY is increased. With these sign

conventions, positive strains will be seen to correspond to positive stresses,

as previously defined.

We now consider the following general question: When a state of plane

strain is defined by given values of Cy, and 7*^, in orthogonal directions

OX dnd OF, what are the corresponding strains associated with the

mutually perpendicular directions OA and OB which make the angle 0
with OX and OF, respectively, as shown in Fig. 7.12b? To answer this
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question, consider a rectangular element OXAY whose diagonal OA makes
the angle with OX as shown in Fig. 7.13. Let rf.r, dy^ denote the lengths

of its sides and ds the length of its diagonal. As a result of the given

strains Cx, €y, OX elongates by the amount OY elongates by the

amount tydy, and the original right angle YOX increases by the amount
Fof ckrity, these three deformations of the element are shown

separately in Figs. 7.13a, b, c. The corresponding changes in the length

oi llic diagonal OA are +€rdx cos </>, -f sin and —yxydx sin 0, as shown

in the figures. The net change in OA is the algebraic sum of these three

quantities and the corresponding strain in the direction OA is obtained by

Fig, 7.13

dividing this sum by the length ds. Thus with the observation that dx/ds

= cos 0 and dy/ds — sin 0, we obtain

ta = €x cos^ 0 + sin^ 0 — 7^ sin 0 cos 0 (a)

The strain eb in the directum of OB may be (obtained simply by replacing

0 in expression (a) by 90° + 0, giving

C-, = tjr siir 0 + Cy cos'-^ 0 + yxy sin 0 cos 0. (b)

By making the trigemometric substitutions siii^ 0 — ^(1 — cos!20),

cos^ 0 = 2(f + ^0), ^^-nd sin 0 cos 4> ~ \ sin 20 in expressions (a) and

(b), they may be written in the form

Fig. 7.14
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= i(cx + €y) + -J(€x — ey) cos 2<t> — ^yxy sin 2^,1

C6 = i(^x + €y) + — «y) COS 2^ + ^7xv sio 20. j

A general expression for the shearing strain 70^ may be obtained in a

similar manner. Consider, in Fig. 7.14, two adjacent rectangular elements

so proportioned that their diagonals OA and OB are mutually perpendicular

Then from F'ig. 7.14a representing the influence of Ci alone, we see that the

change in the original right angle BOA is as follows:

ZAOA^ + ZBOBi = ^ dx sin 0 6x dx' cos 0
ds ds'

= €x COS 0 sin 0 + ex sin 0 cos 0 = Cr sin 20.

Similarly, from Fig. 7.14b, the change in the right angle BOA due to the

strain alone is

- ZAOAi ^BOBi =
AA,
OA

BBi
OB

ty d\j COS 0 _ ty dy sin 0
ds ds'

= — sin 0 cos
(f)
— €y cos 0 sin 0 = — sin 20.

Finally, referring to llg. 7 I4c, the change in the right angle BOA caused

by the shearing strain jxy alone is

ZzVOAi - ZBOBi
A'

A

1 BBi _ yxy dx cos 0 yxy dx' sin 0
OA “ OB "Is ds'

= yxu cos2 0 - yxy sin2 0 == 7xy cos 20.

The algebraic sum of the above angle chaiiges gives the net change in the

angle BOA, i.e., the desired shearing strain y^b as follows:

yob = (cz — €y) sin 20 + 7zw cos 20,

which can arbitrarily be written in the form

hob = hr - sin 20 + hry COS 20. (7.12)

Comparing the first of eqs. (7.11) and eq. (7.12) with eqs. (7.1) of Art.

7.1, we see that there is a complete analogy between a state of plane strain

and one of plane stress. The linear strains fx, and «« in eqs. (7.11) and

(7.12) correspond, respectively, to the stresses o-*, ay, and an in eqs. (7.1),

while the half shear strains 7x^/2 and yab/2 correspond to the shear stresses

Txy and T, respectively. This suggests that a Mohr’s circle for strains may
be constructed in the same manner as was previously done for stresses.

In Fig. 7.15a, let €* and Cy represent given linear strains in the x and y

directions and let y^y represent the corresponding shearing strain, i.e., the

amount that the original right angle XOY increases due to deformation.

This shearing strain is represented in Fig. 7.15a by a clockwise rotation of
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OX through the ajigle yxy/2 and by a counterclockwise rotation of OY
through the angle yxy/2. Clockwise rotation of a line is to be considered as

positive and counterclockwise rotation as negative.

Now to construct a Mohr’s circle for this state of plane strain, we begin

with the coordinate plane c, 7/2, as shown in Fig. 7.15b. Laying out the

extensional strain tx as a positive abscissa and the clockwise rotation

yxy/2 of the line OX as a positive ordinate, we obtain point D on the circle

corresponding to the x direction in the plane of the plate. Similarly, laying

out the extensional strain ty as a positive abscissa and the counterclockwise

rotation yxy/2 of the line OF as a negative ordinate, we obtain point Di

on the circle corresponding to the y direction in the plane of the plate.

Drawing the diameter Z)Di, the center C is located and the circle can be

drawn as shown. This done, the strains €„, and yab/2 associated with the

orthogonal lines OA and OB which make any angle 0 with the lines OX and

07, respectively, can be found from the circle as follows: Since is a

counterclockwise angle from A" to A, we lay out from D on the circle the

counterclockwise angle 2<t> to locate point E representing the direction OA
in Fig. 7! 15a, and draw^ the diameter EEi as shown. The coordinates of

points E and E] represents the strains and yab/2 associated with the

directions OA and OB in Fig. 7.15a. The positive coordinates of point E
indicate that the line OA undergoes extension and rotates clockwise during

deformation, while the coordinates of Ei (positive abscissa and negative

ordinate) indicate that OB also undergoes extension but that it rotates

counterclockwise. This means that after deformation the angle AOB is

slightly greater than a right angle.

Of particular interest in the case of a state of plane strain defined by

given values of e^, e,,, and 7*^, is the direction of principal strains. That is,

the directions of two mutually perpendicular lines 01 aad 02 which remain
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at right angles after deformation and along which the linear strains ci and

€2 are, respectively, a maximum and a minimum. From Mohr^s circle,

Fig. 7.15b, we see that these principal directions are represented by points

A and B, since these points have zero ordinates indicating no shearing

strain. The clockwise angle DCA = 20i in Mohr’s circle indicates that the

direction of the principal strain ei makes a clockwi.se angle <t>i with the

direction OX. Similarly the clockwise angle DyCB = 2<i>] indicates that the

direction of principal strain 62 makes the same clockwise angle 4>i with the

direction OY. Thus the principal axes of strain 01 and 02 will be oriented

as shown in Fig. 7.15c. The magnitudes of ei and are .seen to be ei = OA
and 62 = OB on Mohr’s circle. They are also seen to be the maximum and

minimum linear strains in the plane of the plate.

Analytic expressions for the principal strains ei and 62 in terms of given

values of c*, ey, and yxy can easily be found from the geometry of Mohr’s

circle (Fig. 7.15b) as follows :

OA = OC + CA = OC + CD,]
y (c)

= OB = OC - BC == OC - CD.]

Then noting that OC = + fy) while CD = yjiCD'Y + (DD')*. where

CD' - Ke* ~ «») and DD' = ^yxy, eqs. (c) become

(7.13)

.. - !(.. + + (f)’
I

The clockwise angle </>! defining the direction of these principal strains with

reference to OX is given by the equation

tan 2<^i = — DD'
CD'

7gy/2 _ Txy

Wx ~ Cy) e, - €y-
(7.14)

obtained from the trigonometry of the right triangle CDD' in Fig. 7.15b.

Equations (7.13) and (7.14) are seen to be analogous to eqs. (7.4) and (7.2)

of Art. 7.1 for the magnitudes and directions of principal stresses. They can

be used for the calculation of magnitude and direction of principal strain

without the need of constructing Mohr’s circle, if preferred.

PROBLEMS

1. A state of plane strain in a steel plate is defined by the following data: e, =

+0.00050, ey = +0.00014, y,y +0.00036. Construct a Mohr’s circle and find

the magnitudes and directions of principal strains. Ans. €1 = 575 (10)~*; 62 =

66(10)-®;*! » »22**30'.
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2. S(jlve Problem 1 if = -0.00014, 6^ = -0.00050, jry = +0.00036. Ans.

€i = -65(40) 62 - -575 (10)-«;«, = -22°30'

3, Using eqs. (7.13) and (7.14), find the magnitude's and directions of principal

strains for the states of plane strain defined bv €x = +0.00050, 6y = +0.0(X)30,

= -0.00105. Ans. e, = 935 (10)-«; e. = -135 (10)-«; 0, = +39°59'.

7.5 The Strain Rosette

In the case of a material subjected to plane stress, it is often desirable to

obtain the stresses by direct measurement. Since stresses cannot be

measured directly, this requires the mt'asurement of strains or deformations

which take place in the material during loading. Such measurements are

usually made with very sensitive strain gages attached to the surface of the

body before it is loaded so that they can record the amount of strain that

takes place during loading. The (jiiestion naturally arises as to how to

arrange these strain gages so as to get sufficient strain data to be able to

(‘ompute therefrom the corresponding stresses. An obvious answer to this

question would be to measure the linear strains ex and in any two per-

pendicular directions at a chosen point on the surface of the body and the

(ffiange in angle 7*v between these two directions. Then the principal strains

('ould he found as explained in the preceding article, and having these, the

principal stresses would be calculated from eqs. (3.6) of Art. (3.2). How-
ever, accurate measurement of the shearing strain 7iy is found to be very

difficult. It is easier and more a(*curatc to measure, in the neighborhood

of a chosen point on the surfuci* of the body, three linear strains €«, ct, €c,

in three different directions and then deduce from these measurements the

magnitudes and directions of the principal strains ei and Such a group

of strain gages is called a strain rosette. One standard arrangement of the

strain ros^d^e will now be discu.ssed in detail.*

7'he 45° Strain Hosette. If linear strains and €c are measured along

lines oa, uh, and or, 45° apart as shown in Fig. 7.16a, Mohr^s circle can be

constructed without ambiguity and the principal strains ci and €2 can Vje

fo\md therefrom. This Mohrts circle will be constructed in the following

manner; In the e, 7/ 2-plane (Fig. 7.16b) draw three verticals aa, 56, and cc,

having respectively, the abscissas €«, Ch, as shown. (If any of the meas-

ured strains were negative, the corresponding verticals would lie to the left

of the origin 0.) Locate the center C of the circle midway between the tv/o

verticals aa and cc as shown. If the intermediate vertical 66 lies to the left

of C, as assumed here, lay off on the vertical aa the positive ordinate

Z) 'D =* CF' and on the vertical cc, lay off the negative ordinate D\Di = CF\

*Eot additioiidi information on the strain rosette, see K. J. Bossart and G. A. Brewer,
“A Graphical Method of Rosette Analysis,” Prw: Sor. Exp. Stress Analysis Vol. IV,
No. I, p. 1.



THE STRAIN ROSETTE m
F' being the point where bb iniersectti the e-axis. The line DDi, so ol)taincd,

is the diameter of the required Mohr's circle which can now be drawn. This

circle will cut the intermediate vertical bb at a point F such that CF will be

perpendicular to DDi, since by construction the triangles CDIX and FCF'

have been made congruent. Thus points i), F, and Di, having, respectively,

abscissa €«, e?,, and and being 90° apart in counterclockwise order in

Fig. 7.16b, represent completely the strains asso(‘iated with the directions

oUf ob, and oc which are 45° apart in Fig. T.lOa. The principal strains are

€1 = OA and €2 = OB. The direction of the principal strain ei makes the

angle <l>) - ^ Z DCA w'ith the direction on as shown in Fig. 7.16c.

Fig. 7.16

Knowing the principal strains ci and the principal stresses cri and

can be calculated from eqs. (*1.6); namely

(«i + ^^e2)E (eo + n(:i)E ^ ^
CTl = — 5—’ CTo = — ^ (a)

1 — M I — M

This assumes, of course, that the material has not been stressed beyond its

elastic limit.

KXAMPLi: 1 . Data taken from a 45°-Rtrain rosette (see Fig. 7.17a) reads as follows,

fa = 750 microinches/in., €6 = — 110 microiiichcs/in., and Cc = 210 microinches/in.

Find the magnitudes and directions of prin<*ipal strains and the corresponding

principal stresses. Assume F = 30(10)® psi and m = 0.30.

SOLUTION. Beginning with the f, 7/2-plane, Fig. 7.1,7b, construct the verticals

oa, hh, cCy with abscissas Ca = 750* units, = —110 units, and = 210 units, as

shown. Locate center C on the f-axis midway between the verticals aa and cc.

Then since the vertical bb lies to the left of C, lay off the positive ordinate D'D =
CF' along the vertical aa which locates point D. Similarly, lay off the negative

ordinate D'lDi = CF' along the vertical cc to locate point Z>i. With C as a center

and DDi as a diameter, draw Mohr's circle as shown. This circle intersects the

ertical bb at F making CF perpendicular to DD^ as it should be. Scaling OA and
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Fig. 7.17

OB from the diagram^ we find that the principal strains are ti = 1130 (10)~®,

•2 = —170 (10)“*. The angle DCA is measured with a protractor and found to be
65®30'. Hence = 32®45', clockwise from oa to ol as shown in Fig. 7.17c. Sub-
stituting the scaled values of ti and €2 into eqs. (a) above, the corresponding

principal stresses are found to be (T\ = 35,700 psi and = 5900 psi. It will be

noted that although the strain €2 is negative, the corresponding stress o’ 2 is positive.

PROBLEMS

1. Referred to the directions shown in Fig. 7.1 6a, a 45®-strain rosette gives the

following data: = 670 microinches/in.. = 330 microinches/in., €c = 150
microinches/in. Construct a Mohr's circle for this state of plane strain and find the

principal stresses tri and and the angle defining their directions with reference

to the direction oa. Use F = 30 (10)® psi and m « 0.30. Ans, (Ti = 23,800 psi:

cr 2 = 11,300 pai; 01 = -8®33'.

2. Solve Problem 1 if the measured strains are €« = 232, €& = 123, Ct = —80,
all values being microinches per inch. Ans. ai =* 7030 psi; a 2 = —500 psi; 0i =
+8®23'.

3. Solve Problem 1 if the measured strains are €« = 815; 66 = —72, 6c = 165,

all values being microinches per inch. Ana. ai = 36,000 psi; (72 = 6(XX) psi; 0i -
~30W.



CHAPTER VIII

DEFLECTION OF BEAMS

8.1 Differential Equation of the Elastic Line

In discussing pure pending of a prismatic bar in Art. 5.3, it was shown

that the cur\ atiire of the neutral surface was given by the f^quation

1 _ ^
p El

(a)

Thus, for pure b(*iiding, where M is constant along the length of the bar, its

axis bends in a circular arc. It is customary to call this curved axis of the

bar the elastic Line or the deflection carve.

In the case of a beam bent by transverse loads acting in a plane of

symmetry, the bending moment /!/ varies along the length of the Vieam, and

we represent this variation by a bending moment diagram. For such non-

uniform bending it is usually assumed that eq. (a) holds at each cross-

section. Thus the curvature 1/p is seen lo vary along the beam as the

bending moment varies and the elastic line

becomes a rather complicated curve, the shape

of which is defined by eq. (a). To express the

shape of this curve in rectangular coordinates,

we consider any portion of a bent beam as

shown in Fig. 8.1. Through any point 0 on

this elastic line, we take coordinate axes x and y

as shown, the a:-axis coinciding with the original

straight axis of the beam, positive to the right,

and the iy-axis positive downwards. At the ends

of any element ds of this elastic line, we construct

normals which intersect at C, thus defining the. Piq^ g,l

radius of curvature p of the element. Denoting

the angle between these two normals by dSj which is also the angle between

the tangents to the elastic line at the ends of the element, we have the

relationship ds = pdO, from which

cW ^ 1

ds p

197

(b)
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For a beam which is bent within the elastic range of its material, the

elastic line'will usually be a very flat curve. Limiting the discussion to such

conditions, and referring to Fig. 8.1, we now introduce the approximations

dfs = dx and 9 = dyjdXj so that eq. (b) becomes

^ ^ I'
dx^ p

(c)

indicating that we consider only the absolute value of d^yjd.:^

Combining expressions (a) and (c), we have

ty = ^ K
dx^^ El

(d)

The sign in this expression must now be chosen such that it will be con-

sistaiit with the choice of coordinate axes in Fig, 8.1 and the definition of

positive bending moment as that which produces curvature concave up-

wards (see p. 90). For the coordinate axes as shown in Fig. 8.1
,
we see that

when the curvature is concave upwifrds, the slope dyjdx is algebraically

decreasing with x and hence d^yfdx' is negative Likewise, when the

curvature is concave downwards (negative bending moment), the slope

dy/dx is algebraically increasing with x and (Py/dx^ is positive. Thus d'^y/dx’^

is always opposite in sign to M and w^e take expression (d) in the form

dx* El (8 . 1 )

This is the differential tquafion of the elastic line for a beam subjected to

bending in a plane of symmetr3^ Its solution y = f{x) defines the shape of

the elastic line or the dtflectior\ carve as it is frequently called.

Equation (8.1) carries with it two important limitations resulting from

the assumptions made in its derivation. First, the moment-curvature re-

lationship (a), derived in Art. 5.3, assumes that stress is proportional to

strain, i.e., that Hookers law applies. Thus the equation is valid only for

beams that are not stressed beyond the elastic limit of their materials.

Second, since expression (c) assumes that the curvature is always small,

the equation is limited to the treatment of small deflections. Most beams
encountered in engineering practice will be well within the validity of these

two limitations. Furthermore, eq. (8.1), derived originally for pure bending

does not account for any deflection resulting from shear deformation of the

material. The additional deflections due to such deformation will be dis-

cussed in Art. 8.4. It will be shown there that for beams of ordinary pro-

portions, the deflections due to shear deformation are usually small and can

be neglected.
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If we twice differentiate eq. (8.1) with respect to i*, we obtain, with

reference to eqs. (5.1) and (5.2),

and

dx^ dx (8 .2 )

(W
dx

w, (8.3)

where V is the shear force at any cross-seetion and w is the intensity of

distributed load. Equation (8.3), for example, can be used to investigate

the deflection of a beam supported by an elastic foundation.

The application of eq. (8.1) to find the deflection curves for various

transverse loadings of prismatic beams will now be shown by several

examples.

EXAMPLE 1. A simply supported pris-

matic beam AB carries a uniformly dis-

tributed load of intensite w over its span I

as shown in Fig. 8,2. Develop the equa-

tion of the elastic line and find the maxi-

mum deflection 5 at the middle of the

span.

SOLUTION. Taking coordinate axes x and

y as shown, we have for the bending mo-
ment at any point x Fig. 8.2

and eq. (8.1) becomes

wx^

wlx WC‘‘
-y- + -y* (e)

Multiplying both sides by dx and integrating, wo obtain

dy _ w/x* ut’

(ix 4 fi

’’ (0

where C\ is an integration constant. To evaluate this constant, we note from

symmetry that when x = 1/2, dy/dx = 0. From this condition, we find

and eq. (f) becomes
wlx^~ wx^

+ -r+
wB

(g)

Again multiplying both sides by dx and integrating,

Ely
wlx^

"
12

wx* wl^x
(h)

The integration constant C 2 is found from the condition that y = 0 when x = 0.
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Thus C 2 = 0 and the required equation for the elastic line becomes

(i)

To find the maximum deflection at mid-span, we sot x — 1/2 in eq. (i) and obtain

3S4/t7

The maximum slope at the left end of the beam can be found by setting

X = 0 in eq. (g), which gives

(
\dx 2AEI

EXAMPLE 2. A prismatic cantilever beam A B carries a concentrated load P at its

free end B as shown in Fig. 8.3. Find the equation of the deflection curve referred to

coordinate axes x and y as shown. Determine also the maximum deflection 6 and
maximum slope 6b at B.

SOLUTION. For axes as shown, A/^ = ~P{1 — x) and eq. (8.1) becomes

Multiplying both sides by dx and integrating, we obtain

wherein Ci must be taken equal to zero to satisfy the condition dy/dx = 0 when
j: = 0. Thus

Px‘^

2
'

Again multiplying both sides by dx and integrating,

Plx^ Px^
, ^- T- +

Since ^ = 0 when x = 0, we have C 2 = 0 and the required expression for the

deflection curve becomes

EI^ = Plx
dx

(j)

_ Fx* / xN
^ 2E1\ 3/

(k)

- /, ^

Po

Setting X - Im eq, (k), we obtain, for the deflection at

PP
b =

3E7

Fig. 8.4
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Likewise, setting x = Hn eq. (j), we find, for the slope at J?,

EXAMPLE 3. A simply supported prismatic beam AB carries- a concentrated load

P as shown in Fig. 8.4. Locate the point of maximum deflection on the elastic line

and find the value of this deflection.

SOLUTION. Choosing coordinate axes x and y as shown, we have for 0 < a: < a,

M. = y*,

while for a < X < I

Mr = — a; — P (x — a).

Substituting these expressions for bending moment into eq. (8.1), we obtain for the

two portions of the deflection curve, the following two differential equations

0 <x < a

El
dx^

Pbx

r

a < X < I

El
dx^

Pbx
-PPix- a)

Successive integrations of these equations give

(1)
dx 21

Pbx^
Ely — + Crx + Cj (ni)

(o)

where (7i, (72, Dx, D 2 ^
are constants of integration. To find these four constants, we

have the following conditions:

1. At X = 0, y = 0.
1

2. At X = Z, y = 0.

3. At I = a, ^ ^ at X = o.
dx dx

4. At X = a, y = y at x = a.

Using condition (1) in eq. (m), we find (72 *= 0. Using condition (3) in eqs. (1) and

(n), we find Cx = Dx. Using condition (4) in eqs. (m) and (o) and noting that

Cl = Dx while C 2 = 0, we find that D 2 = 0. Finally, using condition (2) in eq. (o)

and noting that a - Z — 6, we find

C. - ^ (P - 6>) = D,.

'

Using the constants as determined, eqs. (m) and (0) defining the two portions of the

elastic line of the beam become

Ely =^ - x»)
(p)

I

E/p = ^ (X - o)* -I- (J* - 6*)x - x«
j. (q)
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For a> b, the maximum deflection will occur in the left portion of the span, to

which eq. (p) applies. Setting the derivative of this expression equal to zero gives

X
- b\

3

which defines the abscissa of the point having a horizontal tangent and hence the

point of maximum deflection. Substituting this value of x into eq. (p), we find

//ill ft X

Ph
- hy. (r)

Fig. S.f)

KXAMPLE 4. A simpl}'' supported prismatic

beam AB is ac^ted upon by a couple Mq ap-

plied at an intermediate point C as shown
in Fig. 8.5. Derive the general equation for

th(‘ portion A C of the elastic line. Find alsf>

the deflection of point C and the slope at A .

SOLUTION. The reaction Ra — Mo/

1

and

the l>ending moments in the two portions of

the vspan become

0 < X < a a < X < I

M,
MqX~ If nrMr = Miu

Substituting these ('xpressioiis into eq. (8.1), we obtain

il/uX

~T + Mu.

Two integrations of each of th(‘se equatuins produce

El
dx 21

"b C\ (s)

Ely — — —\- C\X C 2 (t)
TlfoX^ A/ax2

Ely = 1 ^ b OiX + D 2 . (v)

The integration constants are determined from the conditions

(1) 1/
= 0 at X = 0

I
(2) y = 0 at X = /

3) at X = a, ~ at X = a
(IX dx

4) at X = a, y = y f
&t X a.
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vSubstituting these conditions into the above equations, we find

n Af ^ 0®*

C, = 0

Ml Mta*
~ 3 21

'

D, =

With those values, oqs. (s) and (t) for the portion AC of the elastic line become

(w)^ - 3(0* + x*) - 2/*],

Ely = ^[6af - 3a* - J* - 2/*].

6/

Setting X = a in oq. (x), we find for the deflection of point C

=~m - 2a* - (*1.

Setting j = 0 in oq. (w), wo find for the slope at A

», - - .W - 2/1.

(x)

(y)

(z)

PROBLEMS

1. With reference to the (joordmabi axes x and y as shown in Fig. A, derive the

t*quation defining the deflection curve of a uniformly loaded cantilever beam. From
this, evaluate the deflection 5 at the free end. /Ins. 5 = wl*/HEI.

2. Repeat the solution of the previous problem for the case of a distributed load

the intensity of which increases uniformly from zero at the free -end to w at the

built-in end. /Ins. 8 = wl^/30EI.

3. Repeat the solution of Problem I for the case of a clockwise couple of moment

Mo applied at the free end of the beam. Ans. 8 — MJ}/2EI,
4. V simply supported beam is acted upon by a counterclockwise couple of

moment Mb at the end B as shown in Fig. B. Derive the equation of the deflection

curv(i and find the maximum deflection. Am. i/ma* = 9^3
^ ~

5. Repeat the solution of the preceding problem for the case of a distributed

vertical load, the intensity of which varies linearly from zero at A to lo at B. Am.
2/m a, = 0.00652 wl*/EI at x = 0,519/,

1
IT per unit length

-LILlU 1 1 U. M nUT
*

1

^ -n
/

Fig. a Fig. B
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6/ A simply supported beam AB carries a distributed load, the intensity of which
varies as shown in Fig. C. Derive the equation of the elastic line. Hint: Ikgin with

the fourth-order differential equation (8.3) instead of (8.1). Am. y = -“pj^sin -r-

7,

A simply supported beam AB consists of two wood planks having thicknesses

hi and /i 2 ,
laid one on top of the other and loaded as shown in Fig. D. Neglecting

friction between the planks, find the ratio of their maximum bending stresses ui and
O’ 2. Hint: Both planks have the same deflection curve: hence, the same curvature at

each section. Ans. a i : 02 = hi ‘.hi.

w per unit length

:sr
A B

Fig. D Fig. E

8. A cantilever beam AB of uniform flexural rigidity FA is built-in at A and
carries a vertical load P At B (Fig. E). As the beam deflects under increasing P, it

comes in contact with a rigid circular foundation of large radius R as shown. Find
the distance x defining the position of point C where the beam breaks contact with

El
the foundation for a given value of P. Am. x = /

—
PR

9. What kind of pressure distribution exists between the beam and the circular

foundation in the region AC in Fig. E?

8.2 The Moment-Area Method

We shall now discuss a semigraphical method of dealing with the pro>dem

of deflection of beams subjected to bending. Combining eqs. (a) and (b) of

the preceding article, we obtain

ds El
(a)

where dd is the angle subtended by an arc element ds and Af is the bending

moment to which the element is subjected. Then, as before, for flat deflec-

tion curves, wr may take ds ~ dx (see Fig. 8.1) and write

d9 « Mdx
El

(b)
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This relationship can now be given a very simple graphical interpretation

with reference to the elastic line of the beam and its bending moment
diagram. In Fig. 8.6, AH is any portion of the elastic line and AiBi is the

corresponding bending moment diagram. AO and BO are tangents at A

and B, intersecting at 0, and 6 is the angle betw^eon these tangents, as-

sumed small. The vertical distance B'B is the deflection of point B away
from the tangent at A, while A'

A

is the deflection of A away from. the

tangent at B. All these quantities are understood to be very small.

Now let ds = djc be any element of the elastic line at the distance x from

B and note that the angle between tangents at its ends is dd. Then from

eq. (b), we conclude that this angle is equal to the area M dx of the shaded

strip of the bending moment diagram in Fig. 8.0 divided by El. Integrating

eq. (b) between A and £f, we obtain for the total angle B between tangents at

A and B

Since this integral represents the total area of the bending moment diagram

A}B} divided by El, we have the following conclusion:

Theorem 1. The angle 6 between tangents at any two points A and B on the

elastic line is equal to the total area of the corresponding portion of the bend--

ing moment diagram, divided by EL

I^t us now consider the deflection of point B relative to the tangent at A
,

i.e., the vertical distance B'B in Fig 8.6. Keeping in mind that the angles

between these tangents are very small, we note from the figure that bending

Fig. 8.6 Fig. 8.7
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of the element ds contributes to this deflection by the amount xd9. Then by

summation, the total distance B'B becomes

Since M dx is the area of the shaded strip of the bending moment diagram

and X is its distance from By we conclude that the right-hand side of eq. (8.5)

represents the statical moment with respect to B of the total bending moment
area between A and B, divided by EL Thus, we have the conclusion:

Theorem II. Tlie deflection of B away from the tangent at A is equal to the

statical moment
y
with respect to By of the bending moment area between A and

By dwided by EL

This statical moment will be obtained simply as the product of the total

area of the bending moment diagram betw'een A and B multiplied by the

distance x to its centroid C (Fig. 8.6).

If there is an inflection point in the elastic line between A and B as

shown in Fig. 8.7, caution must be exercised in using the above theorems.

In such a case, the bending moment diagram divides itself into a positive

portion A J)i and a negativ^e portion />iBi, with centroids C\ and C2 ,
re-

spectively. Then to find the angle B between tangents at A and B, we have

from eq. (8.4)

f'J A

M dx

~W~
Mdx
El

' (c)

111 short, to obtain the angle 6 between tangents at A and B, we must take

the net area of the bending moment diagram between A and B, divided by

A/2-—

T"
-i-l E[j

1
^ ^ J

Area = bh

L 1

Areo = th/Z

parabola>^

^dflTI
"nn
'1^

-*

yr
A

L . »

Area = 2AA/3
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EL Similarly, for the deflection of B away from the tangent at A, eq. (8.5)

becomes

^^Mxdx f^Mxdx
A El Jn El

(d)

That is, the required deflection is obtained as the difi‘eren(*e between the

statical moments with respect to B of the positive and negative portions of

the bending moment diagram. This can also be expressed as follows:

6 = (e)

where xi and X2 are the centroidal distances shown in h'ig. 8.7.

Since most of the bending moment areas with w'hich we have to deal are

simple rectangles, triangles, and parabolic segments, their areas and the

location of their centroids are easily found. A few of these are sum-

marized in Fig. 8.8 for ready reference. In the.se diagrams, C denotes the

(!entroid of the shaded area and F, the vertex of the bounding curve.

Applications of the moment-area method will now be illustrated by

several examples.

EXAMPLE 1 . Determine the deflection b and the slope B at the free end A of the

cantilever beam AB loaded as shown in Fig. 8.9a.

SOLUTION. The bending moment diagram is shown in Fig. 8.9b. Since the tangent

to the elastic line at B coincides with the undeflected axis of the beam, the required

deflection 5 will be the deflection of A a>vay from the tangent at B. Thus, using

Theorem II, we have

EL 2
/ ^ Pl^

2EI^ 3
~ 3Ei (0

Likewise, the slojje at A is the angle between tangents at A and at B and from

Theorem 1, we have

$ =
Pli

2EI
(g)

Fio. 8.9 Pig. 8.10
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EXAMPLE 2. A simply supported beam AB carries a concentrated load P at

point D as shown in Fig. 8.10a. Find the deflection 5 of point D from the cord line

AB and the angle B

a

between this cord line and the tangent at A

.

SOLUTION. The bending moment diagram is shown in Fig. 8.10b. The area of

this diagram is Pab/2 and the distance of its centroid C from B is }i(l + b) as shown.

Taking the statical moment of this area with respect to point B, we obtain the

deflection B'B of B away from the tangent at A . Thus

B'B =
Pab

2FJ

{l + b)

3

Then noting from the figure that Ba ~ B'B I, we have

Ba
Pab

mi (/ + b). (h)

We sec also from the figure that th(‘ required deflection of point I) fioni the chord

line AB is

6 = qBa - 5', ( 1 )

where 8' is the deflection of D away from the tangent at A, This deflection 8' can

be found by using Theorem 11 for the portion A iDioi the bending moment diagram.

The area of this is Pa^b/2l and its centroid is at the distance a/3 to the left of D.

Thus

5' — V ^
(i)

Substitution of expressions (h) and (j) into eq. (i) gives

mr ^ ^ mi mi' (k)

EXAMPLE 3. Locate the point of max-
imum deflection on the simple beam
discussed in the preceding example and
evaluate this deflection by the moment-
area method.

SOLUTION. The maximum deflection

occurs at point E (Fig. 8.11a) where
the tangent to the elastic line is hori-

zontal, i.e., parallel to the chord line

AB. Let X denote the distance of this

point from A. Then the angle between
tangents at A and E must be equal to

6a as already found in eq. (h) of the

preceding example. Thus the area of

that portion of the bending moment di-

agram between A and E (Fig. 8.11b)

must be such th^t

Pa6

mi O' + h)A

Pbx^

21EI

Fig. 8.11
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from which

la(l-hb)

Then since 3^ ax is the deflection of A away from the tangent at E, we have

5max
2/£;/‘ 3 9^J3lEI

- by.

( 1 )

(m)

This is seen to agree with eq. (r) on p. 202.

EXAMPLE 4. A prismatic cantilever beam AB carries a uniformly distributed

load over the portion b of its length as shown in Fig. 8.12a. Find the deflection S of

the free end A,

SOLUTION. The bending moment diagram is shown in Fig. 8.12b. Its area io6V6

and the position of its centroid C are found by reference to Fig. 8.8. From Theorem
1 1 the deflection 5 will be obtained by dividing by El the statical moment of this

area with respect to point Ai. Thus

6
wb‘^

(a -f ib). (n)

Fig. 8,12

EXAMPLE 5. A simply supported beam
AB is acted upon by a couple of moment
M applied at B as shown in Fig, 8.13a.

Locate the point of maximum deflection

E and find

SOLUTION. The bending moment dia-

gram is shown in Fig. 8.13b. The deflec-

tion BB' of point B away from the

tangent at A is obtained by taking the

statical moment of this diagram with

respect to Bj. Thus

^^ I m
2EI 3 6EI

Fig. 8.13
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Then noting from Fip. 8.13a that Sa = BB* /, we have

Oa
Ml

(o)

The point of maximum defleetion is that point E where the tangent to the elastic

line is horizontal. Hen(;e, the distance x is found by equating the shaded area of the

bending moment diagram divided by El to Sa in eq. (o), i.e.,

Ml ^
(yEI “ 2lEl'

from which z — l/^jS. Then fimax, equal to the deflection of A away from the

tangent at E becomes

8max
Ml ^
6El' 3 El

(P)

PROBLEMS

the moment ar(‘a method, find the slope 6 and the deflection 8 at tlu;

free end of a cantilever beam AB of length I loaded as shown in Fig. A. Am.
S = Ml/Ef, 8 = Mlh^2EL

Fig. a

Repeat the solution of the preceding problem if instead of the end moment M
the beam carries a uniformly distributed vertical load of intensity w over Its full

length 1. Am. 6 — wP/6EI; 8 = wl*/SEI.

3: A simply supported beam having a span I and a free overhang a carries a

uniformly distributed load of intensity w between the supports as shown in Fig. B.

Using the moment-area method, find the deflection 5i at the middle of the span AB.
Ans. 8 \ = 5wl*/3S^EI

.

C

4.' Referring again to the beam in Fig. B and using the moment-area method,

find the deflection 62 of the free end C of the overhang. Ans. 82 = wal^/2AEl.
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5.* A simply supported beam AB carries a distributed load the intensity of which

varies uniformly from zero at A to ii? at B (Fig. C). Using the moment-area method

,

find the slope Ba of the elastic line at A. Am. 6 a = 7wl^/3GOEI.

Fig. C

6; Referring again to the beam in Fig. C and using the moment-area method,

locate the point of maximum deflection and find 5max. Am. 6max = 0.00652 wl*/EI.

7." A simply supported beam of span I has an overhang AC on the left at the end

C of which a vertical load P is applied as shown in Fig. D. Using the moment-area
Fa-

method, find the deflection 5 of point C. 5 = (I + a).
obi

8: A cantilever beam AB carries a sinusoidally distributed load having intensity

wa at the built-in end B (Fig. E} . Find the deflection 5 at the free end A by the mo-

,
wd*

ment-area method. Am. b = 0.0479
El

8.3 Deflections by Superposition

The differential equation of the elastic line of a beam bent by transverse

loads (eq. 8.1) was derived in Art. 8.1. Since the equation is linear in y and

its derivatives, it follows that its solutions for various loading conditions

may be superimposed. This means, for example, that if we have yi(x) de-

fining the deflection curve of a cantilever beam carrying a concentrated

load P at its free end and y^ix) defining the deflection curve under uniforml^^
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(71*

-

lOi'j*

+
3x*)
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distributed load, then the equation of the defleetion curve for the simul-

taneous action of both loadings is simply

y(i) = yi(x) -f y^ix). (a)

Specifically, the deflection at the free end under the load P is 6i = PI^/SEI.

Under the uniform load of intensity w, the deflection at the free end is

62 = wl^/SEI. Hence, duo to the combined loading, the deflection at the

free end is simply

PP wl*
~ SEI SEl'

(b)

For ready referent^e, a table of deflections, slopes, and complete elastic

line equations for ten primary (jases of loading of cantilever and simply sup-

ported beams is presented in Table 8. 1 . These various results have already

been found either in the examples or problems of the two preceding articles.

Using this table and the method of superposition, it is possible to obtain

various required deflections and slopes for beams and loadings comprising

various combinations of these primary cases. The idea of superposition can

be employed in a variety of ways and some of these will be illustrated by the

examples which follow.

EXAMPLE 1 . A uniform cantilever beam AB is loaded as shown in Fig. 8.14, Find

the deflection 5 of the free end B.

SOLUTION. Using Case 2 of Table 8.1, we have

As a particular case, if Pi = P2 = P, a — 1/3, and b — 21/3, this reduces to

^
2PP

^ ~ 9EI

Fio. 8.14 Fio. 8.15
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EXAMPLE 2. A simply supported prismatic beam with span I and overhang a is

loaded as shown in Fig. 8.15a. Find the deflection at the end C of the overhang.

SOLUTION. Owing to the distributed load on the overhang, the portion A5 of the

beam is in the condition of a simple beam subjected to a couple of moment Mb =
wa^/2 at the end B as shown in Fig. 8.15b. Hence using Case 9 of Table 8.1, we

have

_ MbI _ waH
^'*"3^7“

Due to this rotation of the tangent at B, the overhanging portion of the beam,

considered as absolutely rigid, would take the position BC" in Fig. 8.15a, and we see

that C' would have a deflection

6i = adfi
waH

Wl

In addition to this, the overhanging portion BC does bend due*to the distributed

loading and we ha\M% with reference to Case 3 of Table 8.1,

8E/

as the deflection C'C of point C awav from the tangent at B. Thus the total deflec-

tion of point C becomes

d = 8} 62
waH

6^
wl^

EXAMPLE 3. A prismatic; cantilever beam of length I carries a uniform load of

intensity lo between x - a and x — I sls shown in Fig. 8.16a. Find the deflection 8

at the free end of the beam,

SOLUTION. Consider the beam acted upon by just one element w dx of the dis-

tributed load as shown in Fig, 8.16b. Then from Case 2 of Table 8.1, wc' have

d8
wx^ dx

6EJ
(3/ - X).
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Now since each element of the distributed load between x = a and .r = / produces
a like increment of deflection at the free end, we obtain by summation

* w dx w
*-j. -jsr 517

If the load extends over the full length of the beam, a = 0 and this reduces to

which checks with Case 3 of Table 8.1, as it should.

EXAMPLE 4. A.simple beam AB of length I carries a uniformly distributed load of

intensity w over a portion 6 of the span as shown in Fig. 8.17. Assuming a> b,

find the deflection 8c at the mid-point C of the span.

SOLUTION. We first consider just one element iwif of the load at the distance f
from B, Then using Case 7 of Table 8.1,

m — — P) = --- — 6^)

Setting X = //2 in this expression, we obtain

(
3/2 - 262).

For the particular case where 6 - //2, this becomes

_ 1 / bwV \
' 2\mEIJ

as is to be expected from a consideration of Case 8 in Table 8.1.

w per unit length



DEFLECTIONS BY SUPERPOSITION 217

EXAMPLE 5. A simply supported beam having a span I and overhangs of length

a at each end carries a uniformly distributed losifd of intensity w over its entire

length as shown in Fig. 8.18a. Find the ratio a/l in order that the tangents to the

elastic line at each end of the beam will be horizontal.

SOLUTION. Since both the beam and the loading are symmetrical about point C,

the tangent to the elastic line at C remains horizontal. Hence we may consider half

of the beam as a cantilever built in at C (Fig. 8.18b, c). Then from Case 3 of Table

8.1, the slope 6 i at the free end due to the uniform loading alone (Fig. 8.18b) is

Likewise, due to the concentrated force Ra = w’(a + 1/2) acting alone, the slope 62

at the free end (Case 2 of Table 8.1) becomes

These slopes are of opposite sign; hence setting 61 — 62 we realize the required

condition of the problem. This yields the quadratic equation

-p a/ - = 0,

from which

I

Taking only the positive root as physically meaningful, we obtain

" = 0.366.

The standard meter stick in Paris is supported in this manner to insure that its two

end cross-sections will remain parallel.

PROBLEMS

1. The beam in Fig. A has uniform flexural rigidity El along its full length 3a.

Find the ratio P/Q to make dc = 0. Neglect weight of beam. Ans. P/Q = i.

Fig. a Fig. B
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2. The bar ABC in Fig. 13 has uniform flexural rigidity El over its entire length

21 and forms a right angle at B, Neglecting the weight of the bar and axial elonga-

tion of J5C, find the vertical deflection of point A. Ans. 6^ = 2Pl^/3EI.

3. A prismatic beam ABC hinged at A and supported at B by a vertical wire BD
carries a load P = 100 lb at C as shown in Fig. C. Calculate the vertical deflection

of point C if the wire BD has such cross-sectional area A and modulus E that

AE = 3 (10)® lb, while for the bar AC the flexural rigidity is E/ = 3 (10)^ lb in.*

Ans, dc = 0.0443 in.

4. A steel shaft having flexural rigidity El from A to B and 2EI from B to C is

built-in at C and loaded at A as shown in Fig. D; Find the vertical deflection of

point A. Ans. 5 a = 3PZV16^^/-

Fig. C Fig. D

5. A simple beam AB carries three equal loads P, one at the middle of the span /

and one at each quarter point. Find the deflection 5 at the middle of the span.

Ans. 5 = 19P1V384E/.
6. A compound beam AE consisting of two identical portions AC and CE hinged

together at C is supported and loaded as shown in Fig. E. Find the vertical deflec-

tion 5e of point E. Ans. 5e - 4:Pa^/3EI.

7. Solve the previous problem if, instead of a concentrated load P at E, there is a

uniformly distributed vertical load of intensity iv between C and E. Ans. 5 b =
wa*/4EI,

Fig. E

8. A standard 81-23 steel beam 12 ft long is supported by a fulcrum at C and a

steel tie rod AD, 10 ft long and i in. in diameti^r (Fig. F). Calculate the deflection

of point B due to a vertical load P = 1 kip acting as shown. Ans. 5b = 0.211 in.

9. The beem shown in Fig. G has rigidly attached to it at point C an arm AC to

the free end A of which a vertical load P = 10 kips is applied. Compute the vertical

deflection of the end B of the beam if E = 30 (10)® psi and I ~ 339.2 in.® Ans.

5b = 0.0925 in., up.



STRAIN ENERGY OF BENDING 210

Fig. F Fig. G

8.4 Strain Energy of Bending

Consider in Fig. 8.19a, a prismatic beam subjected to pure bending within

the elastic limit of the material. For such loading, the bending moment M
is constant along the length I of the beam and the elastic line is a circular

arc of curvature A//A7(see p. 197) and the angle 6 subtended by this arc is

6 =
Ml
El'

(a)

This represents a linear relationship between M and 6 as shown in Fig. 8.19b.

Hence we conclude that as the applied couples at the ends of the beam are

gradually increased from zero to any value M, the w’ork which they do is

represented by the shaded area OAB of the diagram in Fig. 8.19b. This

work, ecpial to the strain energy stored in the beam, has the magnitude

U = MB— f

2
(b)

which is analogous to the strain energy of torsion in a bar subjected to

twist [see eq. (d), p. 83].

Using expression (a), the strain energy (,b) itiay be written in either of the

following two forms:

MH EW
(8 .6 )
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If we know’ the bending moment M, we use the first form to calculate the

strain energy. If we know the curvature, defined by 6/1, we use the second

form to calculate the strain energy.

It is scjnetimes iisc^ful to express the strain energy U in a bar subjected

to pure abending in terms of the maximum fiber stress (7,nax = Mc/I^ as

given by eq. (5.oa), p. 1 15. In the particular case of a beam of rectangular

cross-se(!tion of w'idth b and depth h, eq. (5.5a) gives M = ^bk^ o-mnx and

the first of ecjs. (8.6) becomes

u =
I
m (c)

This shows that for the saiiK' maximum liber stress, a bar in pure bending

can 8tor(‘ only f)ne-third as much strain energy as if it were in simple

tension.

In discussing the strain (uun-gy in a beam subjected to non-uniform

bending (Fig. 8.2()a), we shall neglect .strain energy of shear and (‘onsider

only .strain energy of Ixmding.* C'onsidering any tOement of the Ix^am of

length r/.r, the bending rnonumt Mx will b(‘ essentially coirstant over the

length of the element Hence e(|s. (8.6) apply to the element provided we
replace M by Mx, I by d.v, and 6 by (id = dx/p == {(lhj/dx^)(lx. Then
summing up such expressions for all elements of the beam, we obtain

IJ =
i,

MxMx
2t:i

or (8.7)

To illustrate the use of the first of (‘qs. (8.7), ccmsider, for example, a

cantilever beam loaded as shown in Fig, 8.21a. The bending moment at

any cross-section destined by r is M

x

=- Px and the first of e(ps. (8.7)

becomes

j„ 2E1 HEI'
(d)

If the beaih has a rectangular (To.ss-.section of width b and depth h,

the maximum bending stress at the built-in end is

ffmax - j -

Expressed m tiuins of this maximum stress, eq. (d) becomes

= I
m (.)

•Strain energy due to shear will be small in comparison with that due to bending except
for short thick beams. This (luestion is discussed further in the following article.
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Comparing this with expression (c) above, we observe that for the same
maximum bending stress, the cantilever beam carries only one-third as

much strain (Miergy as the beam subjected to uniform bending.

To illustrate the use of the second of eqs. (8.7), (consider the simply

supported beam AB in Fig. 8.22. This beam is so loaded that its deflection

curve has the form of a half sine wave defined by the equation

y = 8 sin y • (f)

The mid-point deflection 6 being specified, it is desired to find the total

strain energy stored in the beam. Differentiating expression (f) twice with

respect to .r, we find

d^y biA . TTX

Substitution of this into the second of eqs. (8.7) gives

Fig. 8.23

EXAMPLE 1. Calculate the deflection d at the middle of a simply supported

prismatic beam AB, under the action of a load P as shown in Fig, 8.23.



222 DEFLECTION OF BEAMS

SOLUTION. The l>ending moment at any cross-section defined by x is

=
2

'

Then, using the first form of eq. (8.7), we obtain for the strain energy of bending in

the beam

U
8EI ~ 96El'

(h)

Equating this strain energy to the work done by the applied load as it is gradually

increased from 0 to P during deflection:

from whicli

2

5 =

PH\

PP
48P/‘

(i)

EXAMPLE 2. A simply supported beam as shown in Fig. 8.24 is struck at its mid-

point C b}' a ball of weight W freely falling from a height h above the beam. Neglect-

ing the weight of the beam and assuming that it behaves elastically, find the total

deflection 6 that will be produced at point C.

SOLUTION. The gravity force W of the ball falling through the total distance

h -f 5 does work equal to

W(h-\-6). (j)

Now let P denote the force exerted by the ball on the beam in the extreme position

of maximum deflection 6. Then for this configuration the strain energy in the

deflected beam is

Pd

2
’

Equating this .strain energy (k) to the work (j), we obtain

y = + «),

from which P = (A + 5).
0

Substituting this expression for P in eq, (i) above, we obtain

2Wl' h + 6
^ ~

48P/ 5

(k)

( 1)

Noting that

represents the static deflection of the beam under the load eq. (/) can be written

in the form

5* - - 2W.t « 0. (m)
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Taking only the positive root of this quadratic equation, we obtain, for the maxi-

mum deflection,

5 2^81- (n)

Fig, 8.24 Fig. 8.25

It is seen from this that the dynamic deflection 8 is always larger than the static?

deflection 5,t. Even when /i = 0, i.c., when the weight IF has no free fall but is

suddenly applied to the beam, eq. (n) gives 8 = 28nt. That is, the suddenly applied

load produces twice as much deflection as when gradually applied.

As another extreme, we may take h» in which case the quantity Sgt® under

the radical may be neglected and « = «.»+
EXAMPLE 3. The rim of a flywheel of weight W and mean center-line radius r is

attached to a hub by four spokes as shown in Fig. 8.25 Each spoke has a rectangu-

lar cross-section of dimensions b X h and a length 1. The spokes are built in at the

hub and pinned at the rim. While the wheel rotates with constant angular velocity

0), the hub is suddenly locked. What maximum bending stress will be induced in

each spoke where it joins the hub? Neglect the weight of the spokes.

SOLUTION. During free rotation, the flywheel rim has kinetic energy

Zw* W ^

foi

When the hub suddenly locks, the rim continues to rotate through some angle 0

before coming to rest and the spokes bend enough to absorb the kinetic energy of

the rim in the form of strain energy of bending. Since each spoke is a cantilever

beam of rectangular cross-section loaded at its pinned end, eq. (e) applies and the

strain energy of bending in four spokes is

Equating kinetic energy (o) to strain energy (p),

I
9

(bhl)
2E 9 2

’

3 jW E
from which (q)
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We see that this maximum stress is proportional to the initial circumferential speed
= ro? of the rim and inversely proportional to the square root of the volume of

material in the spokes.

PROBLEM.S

1. A wooden cantilever beam has length / = 6 ft and a circular cross-section of

diameter d = 6 in. If it carries a load P - 350 lb at the free end, what is the

amount of strain energy stored? The modulus E = 1.2 (10)® psi. Ans. U = 99.8

in.-lb.

2. Repeat the solution to the preceding problem if the total load P = 350 lb is

uniformly distributed along the length of the beam. Ans. U - %o (99.8) = 15.0

in.-lb.

3. Two cantilever beams of circular cross-section are identical in every respect

except that the diameters of their cross-sections are in the ratio di:d 2 = 5:6. What
is the ratio of their strain energies to U 2 when they are identically loaded?

Ans. Ui\U 2 = 2.075.

4. A simply supported wooden beam of rectangular cross-section and span

/ = 9 ft is struck at mid-span by a weight IT = 40 lb falling from a height h = 12 in.

Determine the required cross-sectional area A if the maximum bending stress is iK^t

to exceed 1000 psi and E = 1.5 (10)® psi. Ans. A = 120 sq in.

5. It is decided to give the beam in the preceding problem a cross-section 10 X 12

in. When the 12-in. dimension is vertical, the falling weight produces a maximum
deflection 5i. When the 10-in. dimension is vertical, the maximum deflection is 5 2 .

What is the ratio 5 1 :82? .4n.s. 3i:52 ~ 0.834.

6. A cantilever beam (61-12.5) projects 8 ft beyond the built-in end. A weight

W = 100 lb falling through a height /i = 6 in. strikes the free end of the beam.

Neglecting the weight of the beam, calculate the maximum bending stress produced

by the impact. crmax = 22.800 psi.

7. A solid circular rotor of weight W — 386 lb and radius r = 10 in. is supported

between two parallel beams each having a § X 6-in. rectangular cross-section as

shown in Fig. A, Initially the rotor turns at a constant angular speed of 30 rpm.

If the bearings C siiddcniy freeze so that the rotation is almost instantly stopped,

what dynamical reactions will be produced at A and B1 Ans. Ra — —Rb ~ 2930 lb.

6"

i

A • OC

t

1 1

k 3' 4^ 3 -
*1

Fig, A

8.5 Deflections Due to Shearing Strain

In the pieceding discussions of beam deflections, only the deformation

due to bending stresst^s was considered. In all cases of non-uniform bending

where there is a shear force at each cross-section, there will be some addi-
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tional deflection of the beam due to deformation associated with the shear-

ing stresses. Due to the fact that these shear stresses are not uniformly

distributed from top to bottom of the beam, cross-sections become warped

as shown in Fig. 8.26, which shows curvature of the beam axis produced by

shear deformation alone. Small rectangular elements on the neutral axis

become rhombuses, the vertical edges of which remain vertical during de-

formation. Thus the slope of the deflection (iurve due to shear at any cross-

section is simply equal to the shear strain 7 at the neutral axis. Denoting

then by yi the deflection due to shear, we write the following expression for

the slope of the elastic line

Tmax kV / \

^ If ^ AG

where Vxj

A

is the average shear stress in the (jross-section and k is a

numerical factor by which this average shear stress must he multiplied to

obtain the maximum shear stress at the neutral axis. For a n^et.angular

cross-section, k = 3/2 (see eq. 5.9, p. 128) and for a circular cross-section,

k = 4/3 (see eq. (g), p. 132). Owing to the fact that the flanges of an /-beam

carry very little vertical shear, the factor k may have a value of 2 or 3 in

this case depending on the proportions of the /-section.

Assuming some continuous distribution of transverse load of intensity Wx

on the beam, the shear force Vx will be a continuous function of x which may
be differentiated with respect to x. Then the curvature c>f the elastic line

becomes

dx^ AG dx AG

Analogous to eq. (8.1), this represents the differential equation of the elastic

line of the beam for shear deflection alone. The deflections calculated from

eq. (8.8) can be added directly to those calculated from eq. (8.1) to obtain

the total deflections of a beam subjected to non-uniform bending. Usually,

the deflections due to shear will be found small compared with those due to



226 DEFLECTION OF BEAMS

bending and the former may be disregarded. However, in the case of

short deep beams, the shear deflections may become significant.

To illustrate, let us consider the case of a simple beam uniformly loaded

as shown in Fig. 8.27. In this case, the shear force at any section defined

by X is

F, = wl

and eq. (8.8) becomes

(Pyi
___

kw“
“IG’

Integrating once

dyi _ kwx
dx

~

and again

(b)

(c)

(d)

wjt
2

w per unit length

I l-l-l 1 1 - 1- I 1 I I I l-I 1 1

2

Fig. 8.27

Using the end conditions: ?/j = 0 at j: = 0, = 0 at x = we find

Ca = 0 and C\ = kv}l/2AG. Then eq. (d) becomes

2/1 =
kwlx /. __

x\

2AG\ ~l/
(e)

Taking x = Z/2, this gives for the maximum deflection at the middle of

the span

k wP
“ 8 AG'

(f)

Introducing the notation I = Ar^y where r is the radius of gyration of the

cross-section eq. (f) can be written in the form

5wl*

384£/ h(0'i] (g)
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Taking, as a particular case, a steel beam of rectangular cross-section, we

have k = ;V2, K/(i = 2.5, and r* = h^/l2 for which eq. (g) becomes

This shows that for a depth-span ratio h/l = 1/10, the maximum deflection

due to shear is approximately 3 per cent of that due to bending. As the

depth-span ratio increases, the deflection due to shear becomes more

important

.

In the case of an /-beam. Fig. 8.28, eq. (5.7'), p. 129,

gives

Tmax-
^ -7<[2\^4 4/'‘’

8 J’

from which

Then for a 24WF120 section (see Table B.2 of Appendix B) we lind A =
35.29 in.'^ / - 3035 in.-*, r = 10.15 in., t = 0.556 in., b = 12.09 in., h =

24.31 in., h\ == 22.45 in,, and eq. (h) gives k = 2.91. With this value of fc,

and with E/G = 2.5, eq. (g) becomes

This shows that for a span I = 12 ft, the maximum deflection due to

shear would be approximately 34 per cent of that due to bending, which is

by no means negligible.

In the case of a simply supported beam that carries a concentrated load P
at mid-span (Fig, 8.29), the shear force V = dtF!2 is constant in magnitude

but changes sign at the middle of the beam. When V is constant, we see

from eq. (a) that the slope of the deflection curye due to shear deformation

is also constant. Thus it may be concluded in this case that the deflection

curve due to shear is represented by two straight lines AC and CB SiS shown

in Fig. 8.29c, where the constant slope of the line AC is

dyi _ _ kP
dx ^ AG 2AG

Hence the maximum shear deflection at C is simply

I dwi kPl

b

Fig. 8.28
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Again introducing the notation / = /Ir-, this may be written in the form

Taking again, as a particular case, a steel beam of rectangular cross-section,

we have h = 3/2, E/G — 2.5, and r- = E^/12, and ecp (j) hK^comes

48£/ ^

It has been assumed throughout the foregoing discussion that all cross-

sections of the beam are free to warp as shown in Fig. 8.26. In the case of a

uniformly loaded beam, this condition is approximately satisfied. The shear

force at the middle of such a beam is zero and there will be no w^arping of

this cross-section. The warping increases gradually with the shear force as

we proceed along the beam to the left or to the right of the middle. The
condition of synim(‘try of deformation with refereiu'e to the middle section

is therefore satisfied .

i

/I

Consider now the case of the simple beam with a concentrated load at the

middle, Fig. 8.29. From the condition of symmetry, the middle cross-

section must remain a plane section. At the same time, adjacent sections to

the left or to the right of the middle section carry a shear force equal to P/2
and warping of these sections should take place. However, from the

condition of continuity of deformation, there can be no abrupt change

from a plane middle section to warped adjacent sections. There must be a

gradual increase in warping as we proceed along the beam in either direction

from the middle. Thus only at some finite distance from the middle can the
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'warping attain the value compatible with the shear force on the section.

From this discussion, it must Yye concluded that in the neighborhood of the

middle section the normal stress distribution cannot be that predicted by

the elementary theory of bending (see p. 118). Warping will be partially

prevented and the additional deflection duo to shear will be somewhat less

than that predicted by eq. (j) above. A more detailed investigation of this

question shows that for a simply supported steel beam of rec^tangular cross-

section with a concentrated load at the middle, the maximum defle(‘tion due

to both bending and shear is

Additional deflection of a transversely loaded beam due to shear de-

formation may also be calculated by using the strain energy of shear. To
illustrate, let us consider again thF (‘ase of the simply supported beam of

rectangular cross-section loaded at the middle as shown in Fig. 8.29a. In

such case, the shear force at any cross-section between A and C is simply

V = P/2, and from eq. (5.8), p. 128, the shear stress on any element

situated at the distance y from the neutral surface is

Now using the first of eqs. (4.12), p. 82, the strain energy of shear in this one

element of volume bdydx is

dU =
3^7? (^

-
2/’)

bdydx, (m)

and the total strain energy of shear in the entire beam becomes

U ~
^ Jo J-1 S2GP (4 ^ ~ SOGI

(n)

Equating this strain energy to the work P6i/2 done by the applied load as

it gradually increases from zero to the final value P through the deflection 5i

of its point of application C, we obtain

^ Plh^

40G/
(o)

which can arbitrarily be written in the form

Taking the particular case of a steel beam for which E/G == 2.5, this

becomes

PI* „
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Comparing eqs. (p') and (jO, we see that there is a discrepancy between

the two results. Eq. (p'), obtained by considering the strain energy of shear,

gives a smaller deflection than eq. (j'), obtained by assuming that the de-

flection curve (Fig. 8.29c) was two straight lines having slopes equal to the

shear strain at the neutral surface of the beam. To explain this dis-

crepancy, we recall that in arriving at eq. (j'), we assumed that all cross-

sections were free to warp. However, as already observed, this assumption
violates the condition of symmetry at the middle of the beam. Since eq.

(p'), obtained on the basis of strain energy of shear, does not involve this

assumption, it must be considered as the better result. In tact this can be

seen to be the case b}’^ comparing both eqs. (j') and (p') with the more
rigorous i(‘sult represented by eq. (k)

.



CHAPTER IX

STATICALLY INDETERMINATE BEAMS

9.1 Method of Superposition

Consider in Fig. 9.1 a beam .4 supported by a hinge at A and rollers at B
and C, and subjected to applied loads Pi and Po acting in a plane of symme-
try of the beam. Due to the action of these loads^ reactions will be induced

at the points of support and a free-body diagram of the beam will be as

shown in Fig. 9.1b. The reactions Yb and Fc at B and C will be vertical

because the rollers can offer no horizontal restraint. The reaction at

which can have any direction in the plane of the figure, is represented by its

horizontal and vertical components Xa and Va^

Considering now the static equilibrium of this free body, we have the

general case of a system of forces in one plane. For such a system there are

three equations of equilibrium, namely:

= 0 2F, = 0 2M» - 0. (a)

Since these three equations are insufficient to determine four unknowns, the

beam is said to be statically indeterminate. There is no way, from the stand-

point of the statics of a rigid body, to determine the reactions at the

supports.

Fig. 9,1

231
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If the roller at C is taken away, we arc left with a simple hea.m AB
supported at its (mds. Since such supports arc sufficient for complete

constraint of the beani in one plane, we sa}'^ that the intermediate support at

C is redundant. If the roller at B instead of that at C is removed, we have a

simple beam AC with overhang, which again is completely constrained in

one plane. Thus either the support at B or the one at C may be considered

as redundant. In general, any supports of a bi^am in excess of those both

nec^essary and sufficient for its complete (*.onstraint. in the plane of loading

are said io be redundant supports.

Let us now choose the roller at C as the redundant support. Then re-

moving this support, we consider the simple beam AB as our primary

system. In l^’ig. 11.2, we study the deflection curves of this beam under two

si^parate conditions of loading. In Fig. l).2a, only the applied forces Pi and

/*2 an* acting am] h*

c

represiMits the downward deflection of point C when

(he support there is removed. In Fig. 9.21), only a vertical force Fc is acting

at point (\ and represents the upward deflection of this point. Using

th(^ methods of the preceding chapter, the directions and 5"c can be

calculated without difficulty. Superimposing the two statics of loading in

Fig. 9.2a and b, we conclude that the net deflection of point C is Sc = 5'r
—

iV'r. Xt)w since the support at C allows no deflection, the true v^alue of 3c

IS zero and we com hide (hat

5',. ^ 5"^ = 0. ib)

When (he detlecnnn.s S\ and 5", ari' expr(\ssiMl in (errus of Pi, P2 ,
and Yr,

condition d)) driuieb ( lu' (lue value ol V(‘ As soon as Yc is known, the

t*' per unit length

4prrairLgzmrroj T'ln g

'

i

'

u— —
I

I

I

Fig. 9.3
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remaining reactions Ya and Yu may be ff)und from oqs. (a).

To illustrate the pr()(*edure more specifically, we consider the beam

shown in Fig. D.o. Choosing the support C as redundant, we obtain as our

primary system a simple b(‘am AB of span 21. Under the action of the

uniform load, th(‘ downward deflection of point from C'as(‘ 8 of Table 8.1,

p. 213, will he

_ ow(2]y _ iywV
" ' - 384W

“ 'IW

Likewise^ from C'ase (i of Table 8.
» , the iii)ward defk'ction of point (' due t-o a

vertical force Yc will }»c

AHEI {\KT

Thus condition (b) above gives

24EI

from which

With thi^ \’aliu‘ of }'c, eqs (a) giv(‘ Y i
“ Y n — I'wl and the react ioijs are

completely determined.

The ab()ve example may be look(^d ai in a somewhat, did'eriait way i)y

noting that the tangent to the elasti(*, line at E remains horizontal because

of symiiu^try conditions. Thus we may regard (‘ac.h half of the b(\am avS a

cantilever built-in ai C and supported at Us free end. Consideiing the

portion C/?, \ve have then a so-calh'd ‘'proppt'd cantilever
^

as shown in

Fig. 9.4. When this beam deflects under the applied loading, rotation of the

tangent to the elastic line at C is prevented and a counterclockwise moment

Me is developed at C as shown. Removing this constraining moment as the

redundant reaction, we obtain a simple beam CB as our primary system.

Then under the action of the distributed load, the tangent at C rotates

through the angle 0\ as shown in Fig. 9.4b, while under the action of the

redundant moment Mr. at it rotates in the opposite direction through an

angle Fig. 9.4c. The true value of Mr is found by making O'c
-

0,

since this realizes the condition of a built-in end. From Case 8 of Table 8. J

,

we find

e'e

From Case 9, we find

wV
^7

Mri.
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Equating these values in accordance with the condition that B'c ~ = 0,

we obtain

M. = ~ (c)

The positive value indicates that the assumed direction of Me in Fig. 9.4a

v/as correct; according to our sign convention for bending moment, it

represents a negative bending moment at the built-in end C of the beam.

Returning now to Fig. 9.4a and equating to zero the algebraic sum of

moments of all forces around point C, we obtain

YbI-‘^-\-Mc = 0 .

Substituting expression (c) for Mcj this gives

as found before.

Fig. 9.4 Fig. 9.5

As a final illustration of the method of superposition in dealing with

statically indeterminate beams, consider the beam in Fig. 9.5 having
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both ends built-in and carrying a cojiceiitrated load P, Removing the resist-

ance against rotation at each end of the beam as a redundant constraint, we
obtain, as our primary system, a simply supported beam AB. In this case

there are two redundant reactions, Ma and Mb, and we say that the beam
with built-in ends is twice statically indeterminate. To find Ma and
consider first the primary system under the action of the applied load P,

Fig. 9.5h. Then from Case 7 of Table 8.1, we have, for the angles of

rotation of the end tangents

,
P6(/^ - h^)

‘-—am-
Pab{2L - b)

mi
Considering now the primary system under the action of end moments Ma
and Mb as shown in Fig. 9.5c, and using Case 9 of Table 8.1, we have

d
//

A
MaI Mul
3EI QEI

and 6"

B

= MbI MaI
3EI 6E

I'

Finally, since the net angle of rotation at each end of the lieam must be

zero, we have O'a — 6"

a

= 0 and d’n — d"u = 0. Thus

Pb{P - 62) MaI MbI _ .

61£/ 3EI &E1

Pabi2l - b) MbI MJ _ f.

61E1 3EI 6Ei "•

These two equations yield for Ma and Mb the following values:

PaV
P

and Mb = Po*6

P
(d)

Having the end moments Ma and Mb, the bending moment diagram for

the beam is easily constructed by superimposing the bending moment
diagrams for the loadings shown in Figs. 9.5b and c. This superposition

is shown in Fig. 9.5d, where the triangle abc represents the bending moment
diagram for the load P and the trapezoid abde, that for the end moments.

By plotting the negative ordinates due to Ma and Mb oa the same side

of the base line ab as the positive ordinates due to P, the overlapping

portions automatically cancel and the net bending moment is given by the

ordinates of the shaded portions of the diagram.

Assuming b < a, the numerically largest negative bending moment will

be Afs as given by the last of eqs. (d). This has its greatest value when

6 = l/Z for which iMslmnic = 4Pf/27. The positive bending moment at

the- point of application of the load P, by reference to Fig. 9.5d is

^_Ma + Mb _ Pab.12 21
Me
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This has its greatest value when a = 6 = //2, so that \Mc\max = Pl/S,

which is seen to be slightly less than |A//?|max-

EXAMPLE 1. Two wood beams cut from the same timber are arranged as shown
in Fig. 9.6a, the free end of the cantilever DC being supported at the middle of the

simple beam AB. Both beams are horizontal and at right angles to one another.

Find the vertical deflection 5c at the point of contact due to a vertical load P applied

to the end of the cantilever as shown.
SOLUTION. Lt't X represent the magnitude of the for(*,e with which the two beams

interact as the point of contact. Then the cantilever has a net load P — X at its

end, Fig. 9.6b, and the deflection of this point, from Case 1 of Table 8.1, be(;omes

Fig. 9.6 Fig. 9.7

At the same time the mid-point of {tie beam AB is subjected to a downward force X
and deflects by the amount

^ 48F/

'

by Case 6 of Teble 8.1. Since these two deflections must be equal, we obtain

P_X^X^
3 3 6

'
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from which

X 2

3
F.

Substituting this back into either of the deflection expressions gives

6'e = = 5. =
PF
9EI

This assumes, of course, that there was contact but no pressure between the two

beams at C prior to the application of the load P.

EXAMPLE 2. A cantilever beam ABC is built-in at A

,

propped at B, and carries a

load P at the free end as shown in Fig. 9.7. Find the magnitude of the redundant

reaction at B.

soLUTioisr. Replacing the support at B by the reactive force Rh, we obtain as our

primary system, the cantilever beam AC loaded at B and C as shown in Fig. 9.7b.

From Case 1 of Table 8.1, the downw'ard deflection of point B due to the load P is

PP
[3 (1 T a) - /].

Likewise, from Cast' 1, th(‘ upward deflection of point B due to the force Rjj is

5"/. =

Since the net deflection d'a — = 9, we obtain

from which

Using this value for Rn, we find for the positive bt'nding moment at the built-in

end of the beam

Ma = RJ -P(a + l) = ~

PROBLEMS

ir Find the redundant reaction Rb for the beam AB uniformly loaded as shown
in Fig. A by taking the cantilever built-in at A and free at B as the primary system.

Ans, Rb — iwL

Fig, a Fig. B
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2: A propped cantilver is subjected to the action of a moment a at the end A
as shown in Fig. B. What reactive moment Mb will be induced at the built-in end
B? Am. Mb =

3. Referring again to Fig. B, find the maximum deflection 6m ax due to the applied

couple Ma> 6max = at a; = 1/3.
£1til

4. An L-shaped bar ABC of uniform El is built-in at A and supported by a roller

at B as shown in Fig. C. Find the reactions at A and B due to the action of a horizon-

tal load P at C. Am. Xa = Xb = 3Pa/2l; Ya = P; M a = Pa/2.

5. Referring again to Fig. C, find the horizontal deflection of point C. Neglect

Pa^
axial tension in A Am. dc = (31 + 4a).

\2EI

A prismatic beam on three supports is loaded as shown in Fig. D. Find the

rNfflndant reaction Rc at C Arts. Rc = wP/Sa (I + a).

^TyFor the beam AD supported and loaded as shown in Fig. E, find the reactions

aVxhe four points of support if a = 1/3. Am. Ra - Rd ~ 9ic//44; Rb = Rc =
31?/?//44.

tr/uni1 length M'/'unit length

1 ^ g| 1 1 i M M MTic
A(* DC

k j—iL-—

—

X

Fig. D Fig. E

8. A propped cantilever beam AB carries externally applied couples of moments
M and 2M at its third-points as shown in Fig. F. Calculate the redundant moment
reaction Mb at the built-in end. Mb = 0.

9. A propped cantilever beam with overhang is loaded as shown in Fig. G.
Construct shear and bending moment diagrams and select a suitable WF-beair. if

the working stress = 20,000 psi. Ans. 12WF27.

A
M M

B px:::::-

MH 1.-^ jJ
3

1

3 1

VrfvTT 1

O* fc 1- ft* r 11" » •

20* 3'

Fig. F Fig. G
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10, A cantilever beam A BC built-in at C rests at B on the mid-point of a simply

supix)rte<l cross-beam as shown in Fig. H. The cross-beam is 10 ft long and hks the

same El as the cantilever. When P = 0, the two beams are just in contact at B.

Calculate the magnitude of the force X transmitted to the lower beam. Ana. X =
0.6P.

11. A uniform beam rests on three equally spaced supports and carries a uniform

load of intensity over its entire length. During loading the middle support settles

vertically a distance 6. Evaluate the magnitude R of the middle reaction if each

Fig. H Fig. f

12. A beam with built-in ends carries a triangular distribution of load as shown in

'wl^ xvL^
Fig. 1. Find the end moment reactions M

a

and Mb- Ans. M a = Mb =

13, A propped cantilever is loaded as shown in Fig. J. Select a suitable stahdard
1 -section for the beam if the working stnsss = 18,000 psi. Arw. 81-18.4,

14, Referring to Fig. .1, the support at A is replaced by a vertical steel tie-rod

8 ft long an<l 0.20 sq in. in cross-section. If the brnsion in this rod is zero before any
load is applied to the bi‘am, wdiat t^msion S will it carry after the beam is loaded as
shown*'* Arts. S = 4940 lb.

15. Two cantilever beams AB and DC arc arranged as shown in Fig. K; they have
the same El. What kind of loading will the upper beam exert on the lower one if a
vertical load P is applied at B?

h

D
,

Fig. J Fig. K

9.2 Theorem of Three Moments

In the case of a uniform continuous beam on many supports (Fig. 9.8a),

one support is usually considered as an immovable hinge while all the others

are treated as rollers. In such an arrangement, each intermediate support

represents just one redundant constraint and hence the continuous beam
is as many times statically indeterminate as there are intermediate supports.
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Thus the beam in P'ig. 9.8a is five times statically indeterminate. In such

case, we might choose the five intermediate reactions J?i, /?2 ,
•

. , Rb as

the redundants and then set the deflections 5i, 62
,

. Ss of their points

of application equal to zero. These five equations together with the three

equations of statics for the entire beam would be sufficient to determine

the eight unknown reaction components. This, however, turns out to

be a cumbersome and involved set of equations. Instead, it is much simpler

to cut the beam at each intermediate support and introduce the bending

moments Ml, M2 , . ,
Ms, over the supports as the redundants. In this

way, the primary system becomes six simple beams, each carrying its

own externally applied loads together with two redundant moments at

its two ends. By dealing with these simple beams two at a time, the

complexity of the problem will be greatly reduced.

In Fig. 9.8b, we consider any two adjacent spans with supports n — 1 ,

n, and + 1 . Let and Zn^-l denote those two span lengths and let

Mn~i, Mn, and denote the three redundant bending moments at

these three supports. Whether these bending momenhs are positive or

negative will depend upon the conditions of external loading. We will

assume that they are positive as shown in the figure. Then if calculation

produces for any one of them a negative value, this will automatically

indicate a negative bending moment.

idm n t I I i I M |5

(0)
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The loadings shown in Fig. 9.8b produce some bending of the beam
in spans In and Zn+i and we indicate rotation of the end tangents at the

support n by B' n for the left span and by S'* n for the right span. These

angles of rotation are considered to be positive when they agree in direction

with the end moments Mn- Therefore, as a condition of continuity of

slope of the uncut elastic line over the support n, we have

- -B\. (a)

This is the key to the sohition of the problem.

To express B'n and B'^ n in terms of the applied loads and end moments
for each span separately, we use the moment-area method discussed in

Art. 8.2. The bending moment diagrams hjr the end moments are the

triangles shown in Fig. 9.8c. The bending moment diagrams for the applied

loads are represented by the shaded areas in the same figure. We denote

these areas by An and AnJt-u respectively, and their centroids by Cn and

Cn+i, the positions of which are defined by a„, bn, and i, bn+i, as shown.

Now considering the left span In and using superposition, we find

^ fXn
I

n-lln
,

AnCtn
~

3£/ OEI InEl'

Considering the right span we have

B\ rJ'n+l
I

jl/ n4-1^n4-l .
A n-f

SEI 6EI ^ In^iEI
(C)

Substituting (b) and (c) into eq. (a), we get

Mn-dn + 2Mn{L + h+l) + = - ^4^ - (Q.l)

This is called the three-moment equation; it can be written once for each

intermediate support of the continuous beam. Then from this system

of
^
simultaneous equations the bending moments at the intermediate

supports can be found.

Throughout the foregoing discussion, it has been assumed that the tw^o

extreme ends of the continuous beam were simply supported. If one or

both of these ends should be built-in, the number of redundancies will

exceed the number of intermediate supports. In such case, for each built-in

end, an additional equation expressing the condition that no rotation can

take place at such a support will be available. Suppose, for example,

that the extreme left end of the beam is built-in. Then referring to Fig.

9.8b And taking n = 1 ,
we have

Moil Aibi
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where do is the angle of rotation of the tangent at the left support. Setting

this equal to zero, we obtain

Having found the bending moments at all of the supports of a con-

tinuous beam, there is no difficulty about finding the reactions. Taking

again any two adjacent spans, as shown in Fig. 9.8b, let R'n be the simple

beam reaction at n due to loads in the span In and the reaction at

n due to loads in the span In+i. In addition, there will be reactions produced

by the end moments M n_i, il/n, and Afn+i. Taking the directions of these

moments as shown in Fig. 9.8b, the total additional reaction at the support

n will be

il/n— 1 n n -j- A/n^-1

In-^l

the first part coming from the span /,* and the second part from the span

/n^i. Adding to this, the reactions R'n and due to applied loads, we

obtain for the total reaction at any intermediate support

Rn = R'n + R"n + Afn-1 - Mn — il/ n + M n-i- 1

f 1

Having t he reactions and the bending moments at all supports, the shear

force and bending moment diagram for the continuous beam may be

constructed. Applications of eqs. (9.1), (9.2) and (9.3) to seve'ral specific

cases of continuous beams will be illustrated in the following examples.

EXAMPLE 1. Construct bending moment and shearing force diagrams for the

continuous three-span beam under uniform load of intensity w as shown in Fig. 9.9a.

I'hc three spans are equal and the beam is of constant cross-section.

SOLUTION. For a simple beam under uniform load, the bending moment diagram

is a parabola with maximum ordinate tc/V8. The area of the parabolic segment is

^ 2, wl^ wl^

and its ccmtroid is at raid-span, so that a — b = 1/2. Considering now the first two

spans on the left and noting that Mo = 0, eq. (9.1) becomes

wP wl^
0 -I- (2Z) -H M 2I - - —

•
(e)

From conditions of symmetry, it is evident that Mi = A/ 2,
and eq. (e) gives

Ml *= —wiy 10 — M 2 - The complete bending moment diagram as shown in Fig.

9.9b can now be drawn.

From eq. (9.3) the reaction at support 1 becomes

wl wl wl 1 Iwl
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w per unit length

rTTTM II TTHTTI Tl 1 1 M 1 1

Ao jL, 1

• JL

^2 -A-

-

—

1—

^

3

(a)

(b)

Fig. 9.9

L From symmetry, we conclude that = /?i while = Ri. Then since Rq 4-

f /2i + i22 + ^3 = Ro = Ri - Awl/ 10. Having the reactions, the shear diagram

^i^onstructed as shown in Fig. 9.9c.

EXAMPLE 2. Construct bending moment and shearing force diagrams for the

^ continuous three-span beam loaded as shown in Fig. 9.10a.

SOLUTION. For a simple beam with a concentrated load P at the middle, the

bending moment diagram is a triangle with maximum ordinate P^/4. The area of

this triangle is

4*2“ s'

and its centroid is at mid-span so that a — h — 1/2.

Writing eq. (9.1), once for the first two spans on the left and again for the last two

spans on the right, we have

0 -h 2iVi(2/) + = 0,

+ 2^ 2(20 + 0 = 0 --^'

These simultaneous r*q nations are easily solved for the b(‘nding moments M\ and

Ml and we find

Ml +
40

' " n
10

*
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The corresponding bending moment diagram for the entire ix^am is sliown in Fig.

9.10b. The maximum bending moment occurs under the load P and has the value

1 2
/,..x -

^ 20“ 5*

Tsing c(|. (9.3), the reactions Rx and Ri
at the intermediate supports are found as

follows

n p p op
^ = « + «-

40
-

40 -T0-~r
p p p p 2Q

«^ = 0 + 2+40+10 + Io = W-
Then with the entire beam as a free body,

we find = 4--P/40and /?3 = -f-lfiP/40,

The shearing force diagram may now be

constructed as shown in Fig. 9.10c.

EXAMPLE 3. Construct bending mo-
ment and shearing force diagrams for the

continuous beam shown in Fig. 9.11a,

which overhangs the right-hand support

and carries a load P at the free end.

SOLUTION. Writing eq. (9.1) for the two
adjacent spans 01 and 12, wo have

Md 4- 2Mx(2l) ^ MJ = 0. (g)



THEOREM OF THREE MOMENTS 245

Then since the left hand support is built-in and there are no external loads on the

first span, eq. (9.2) gives Mn = -Af i/2. It must be noted also that Mi = — P^/2

since the beam freely t>verhangs the last support on the right. Substituting these

values into eq. (g), we find M i
= -\~Pl/7. Then Mo = —Pi/14 and M 2 = —Pi/2.

The corresponding bending moment diagram is shown in Fig. 9.11b. From statics,

the reactions are now found to be Po = +3P/ 14, Pi = — i2P/14, P 2 = 4'23P/14,

and the shear diagram is as shown in Fig. 9.11c.

PROBLEMS

1. Find the bending moments Mi and Mi at the supports 1 and 2 of the three-

span continuous beam loaded as shown in Fig. A. Ans. M 1
= — 22Pi/405, Mi —

-32PZ/405.

2. A uniform three-span continuous beam with overhanging ends carries a

uniformly distributed load as shown in Fig. B. Find the ratio a/l in order to make

the bending moments at the three supports all equal. Arts, a/l = l/\6 = 0.408.

0

^

1

T5r

V- -4--

-JT

J-

Fig. A

3

TCI in
j)er unit length

ttr
JILCLmil

u a J /- --*j« ^

Fig. B

3. Referring again to the* beam in Fig. H, find the ratio a/l in order to make the

reactions at the three supports equal. Ans. a/l = 0.44.

4. A tw’o-spaii continuous beam with overhang at the right hand end is loaded as

shown in Fig. C. Calculate the reactions at the three points of support. Ana.

Po = 750 lb, up; Pi = 2500 lb, down; P 2 = 750 lb, up.

5. A two-span eoiitinuous beam built-in at the left end is loaded as shown in

Fig. D. Calculate the bending moments at the three supports, Ans. Mo = +5140
ft.-lb; Ml = -10,286 ft.-lb; Mi = 0.

lOOOlb/ft

Fig. D

6. The right-hand span of a continuous beam carries a uniform load of intensity

w over half its length as shown in Fig. E. Find the bending moments at the two

intermediate supports. Ans. M\ - IwP/W/^t Mi = — 28u;ZV^0-

7. Construct bending moment and shear force diagrams for the continuous

beam shown in Fig. F. Ana. Mi^ Mi — +4080 ft-lh; Po = P3 “ 10,680 lb;

= ^2 = -34801b.



246 STATICALLY INDETERMINATE BEAMS

Fig. E Fig. F

8. Calculate the bending moments and reactions at each support of the con-
tinuous beam in Fig. G. Ans, Mx = -1.54 kip-ft; M 2 = -3.74 kip-ft; =
-1.65kip-ft; /?o = -0.386 kips; if? 1 = +2.69 kips ; /?

2

= +6.22 kips;

=

+3.75
kips; Ri = —0.275 kips.

9. Calculate the bending moment Mo and the reaction Ro at the built-in end of

the continuous beam shown in Fig. H. Ans, Mo = —5280 ft.-lb; Ro = 3080 lb.

A* 9*

Fig. G Fig. H

9.3 The Theorem of Casti^liano

In preceding chapters, general expressions for the strain energy stored

in an elastic bar subjected to tension, torsion, or bending have been

developed. This concept of elastic strain energy can be very useful in

the study of deflections of various points of a structure under load. Con-
sider, for example, a prismatic bar under simple tension as shown in Fig.

2.14a, p, 40. The strain energy in this case is, from eq. (2.4),

U = FH
2AE (a)

By taking the derivative of this expression with respect to the applied

load P, we obtain

^ ~ A
dP AE •

Thus the derivative of the strain energy with respect to the applied load

P gives the deflection of its point of application in the direction of the

load.

Again, in the case of a shaft of circular cross-section subjected to torsion

as shown in Fig. 4.12, p. 82, the strain energy is, from eq. (4.13'),

(b)
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The derivative of this expression with respect to the applied torque T
becomes

dU_Tl_.
dT GJ

which is the angle of twist of one end of the shaft with respect to the

other. If we interpret the pair of statically balanced torques at the ends

of the shaft as a ‘^generalized force*' and the angle of twist between these

two ends as the “corresponding displacement,” we conclude again that

the “displacement” is given by the first derivative of the strain energy

with respect to the “force.”

Finally, for a cantilever beam bent by a transverse load P at the free

end, Fig. 8.21a, p. 221, the strain energy of bending is

U = P^l^

i]EI
(c)

The derivative of this expression with respect xo P is

dU ^ PP ^ ,

dP dEI *

which is s(^en to be the deflection of the end of the beam in the direction

of the applied load P.

Each of the foregoing cases is simply an

examples of a general theorem regarding strain

energy which is called the theorem of Castigliano. /?

We shall now proceed with a general derivation

of this theorem. In Fig. 9.12, let AB be any

elastic body or structure completely constrained

in space and subjected to applied forces Pi,

P2, P.3, .... If the material follows Hooke's

law and the deformations are small, the Fig. 9.12

displacements of the points of loading will

usually be linear functions of the loads, i.e., the principle of superposition

will hold.* In such cases, the strain energy stored in the loaded system will

be equal to the work done by the applied forces and independent of the

order in which they are applied. If, for example, the forces are applied

simultaneously and gradually increased in the same proportion, then the

work done will be

t/ = i (P,5, + P-A + PaS, + • • ), (9.4)

where 61, 62, ... are the deflections of points 1, 2, 3, . in the directions

*For e.xceptional caaes, see Timoshenko and Young Theory of Structures, p. 222.
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of the corresponding forces Pi, P2, Ps, . It must be clearly understood

here that 5i, ^2, ^3, may not be the total deflections of the points 1 ^ 2,

3, . . but, in each case, only that component of the total deflection in

the direction of the corresponding force. From our assumption that the

displacements 6j, 62, ... are linear functions of the forces Pi, P2,
. ,

we conclude that if we substitute for 61, 62, • ,
their expressions in terms

of Pi, P2, .
. ,

eci. (9.4) becomes a homogeneous quadratic function of

the forces.

Assume now that after the loads Pi have all been applied and the strain

energy in the system is U, as given by eq. (9.4), we increase any load Pn
by the amount dPn. This will cause a slight change in the deformation

of the body and the stored strain energy will be increased slightly. This

increase inav be expressed as the rate of change of 1/ with respect to Pn
times the change made in P„. In this way, the new amount of strain energ\'

becomes

• dp„. (d)

Since ihe final strain energy does not depend upon the order in which

the forces are applied, we will now assume that dPn is applied first and

afterwards the forces Pi, 1\ P3, .... When dPn is applied first, it produces

only infinitesimal deflections and the corresponding strain energy, of

second order, can be ignored. Applying now the forces Pi, P2, P3,
,

it must be seen that their effect on the structure will be unaltered by the

presence of dP„ and they will store the same strain energy If as before.

However, during the application of Pi, P2, Pt^j
. ,

the; force dPn, already

applied earlier, will ride through th<' displacement 5n produced by Pi,

P2, P3, In so doing, it produ(‘es additional work of the amount
dPn * and the final strain energy in this case will be

U + dPn • 5n. (e)

Equating this expression for final strain energy to expression (d) obtained

before, we have

u + di\d„ = +

from which

5n =^ • (9.5)

This states the theorem of Castigliano in general form. For any elastic

system which olxjys the law of superposition, the partial derivative of the



THEOREM OF CASTIGLIANO 249

strain energy, represented as a quadratic fimction of the forces, with respect

to any one of these forces, gives the corresponding component of displacement

of the point of application of that force. The terms “force’' and “displace-

ment” must be taken in the generalized sense. If the “force” is a couple,

the corresponding displacement will be an angle of rotation in the same

sense as the couple. If it is a true force, the corresponding displacement

will be a linear deflection in the direction of that force. It must also l>e

appreciated that we speak only of statically independent forces, to any

one of which we can give an arbitrary increment 6Pn without affecting

any of the other forces. This means that reactions determined by statics

cannot be considered as independent forces.

EXAMPLE 1. A simply supported beam with overhang is loaded as shown in

Fig. 9.13h. Using the theorem of Castigliano, find the ^TTtical deflection of point C.

SOLUTION. The bending moment diagram for the beam is shown in Fig. 9.13b.

Betwe(*n .i and B, a gen(*ral expression for bending moment at any distance x to

the right of A is

= - Fax

I

(f)

Between B and C, the bending moment at any distance .r to the left of C is

M. = -Px. (g)

Using the first of eqs. (8.7), p. 220, the strain energy of bending in the bt^am becomes

U f‘ PVx\
,

pi
~

Jo Jo-

p-^aV

,

,

rPVdx P^a\,
, ,

(h)

Then from eq. (9.5)

,dU_ Pa^
,, , ,

dP~ m
EXAMPLE 2. The axis of a cantilever ring, built-in at B and loaded at the fre6

end A, forms a horizontal quarter circular arc of radius R, Fig. 9.14. Find the
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vertical deflection d of the free end A, assuming the ring to have a circular cross-

section the diameter of which is small compared with the radius R of its center line.

SOLUTION. Such a curved cantilever is subjected to torsion as well as bending.

At any cross-section Z), defined by the angle d, we see that the bending moment is

Me - PR sin d, (i)

while the twisting moment on the same cross-section is

Te = PR (I — cos 6). (j)

The total strain energy due to the combined bending and torsion of the ring is

Jo 2EI Jo 2GJ

Then by eq. (9.5)

where, from eqs. (i) and (j),

dMe
dP

R sin (i')

dP
— R (1 — cos ^). (i')

Substituting (i), (j), (i'), (j')i into eq. (k) and performing the indicated integrations,

we find

, irPR»
,

(3t - 8) PR^

4^/ 4GJ

EXAMPLE 3. A simple truss composed of two bars each of length I carries a
vertical load P at joint A as shown in Fig. 9.15. Find the horizontal and vertical
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components of the total deflection S of point A. The bars are of the same material,

AB having a cross-sectional area A and AC, a cross-sectional area Ai = 2A.

SOLUTION. From statics, we see that the tensile force in the bar AB and the

compressive force in the bar .1(7 are each equal to P. Hence the strain energy in the

system is

rr - II -H- =^^
2AiE AAE

Then, for the vertical component of the deflection of A
,
we have

"" dP ^ 2AE

To find the horizontal component of the deflection of joint A, we introduce at A

a fictitious horizontal force Q with respect to which we can differentiate the strain

energy expression. With this force acting in addition to P, the strain energy

becomes

^ «?/V3 + py‘l (Q/V3 - P)H

2AE 2(2A)E

Then from eq. (9.5)

a
(<3 +

dQ 2AE

For the case in v/hioh we are interested, Q = 0 and the liorizonta! component of

deflection becomes

PI

2^Js AE

PROBLEMS

1. Calculate the vertical deflection 5 of the free end of a cantilever beam under

uniform load as shown in Fig. A, by using tl'«e Castigliano theoreni. Hint: Introduce

a fictitious vertical force P at A as showm by the dotted vector. Ans. 6 = wl^/SEl.

2. Referring again to the cantilever beam in Fig. A, find the angle of rotation 6

of the free end tangent by using the Castigliano theorem. Hint; Apply a fictional

couple A/ at A. Ans. 6 =- wl^/6EI.

3. A cantilever beam AB has a solid circular cross-section as shown in Fig. B.

A vertical load P is applied to the end of a bracket rigidly attached at the free end B.

Fig. a Fig. B
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Neglecting bending of the bracket, but considering both bending and torsion of the

PaH Pl^
beam, find the vertical deflection of point C. Am, 8 = -777 + -

77
-

y/ (jJ onjJ

^ A cantilever ring AB having a circular axis of radius R is built-in at B and
carries a vertical load P at its free end A as shown in Fig. C. Considering only

bending of the ring, find the vertical deflection of point A, Arw. 8v — irPR^/^EI.

Referring again to the cantilever ring in Fig. C, find the horizontal deflection

8h of the free end A. Ans. 8h = PR^/2EI.
semicircular arch ring supported in its own vertical plane carries a vertical

load P at its crown C as show^ in Fig. D. Considering only the strain energy of

bending, find the vertical deflection of point C. Ans. 8 = 0.178 PR^/EI.
7. Referring again to the arch ring in Fig. D, find the horizontal deflection of the

roller at B due to the load P applied at the crown. Ans. 8b = PR^/2EI.
8. A simple truss with pinned joints is supported and loaded as shown in Fig. E.

Each bar that is in compression has a cross-sectional area of 5 sq in. and each bar

that is in tension has a cross-sectional area of 2 sq in. The load P = 20,000 lb.

Calculate the vertical deflection of the joint C. Ans. 8c = 0.0747 in.

9. Referring again to the truss in Fig. E, calculate the horizontal deflection of the

roller at B due to the action of the load P at C. Ans. 8b = 0.0427 in.

9.4 Applications of Castigliano^s Theorem to Statically Indeter-
minate Problems

The theorem of Castigliano is very useful in the treatment of statically

indeterminate problems. Consider, for example, the case of a continuous

beam having several redundant supports. Denoting by X, F, Z, . . . the

statically indeterminate reactions, the strain energy in the beam will be

a function of these forces and the displacements of their points of applica-

tion will be obtained as dUldXy dUfdY, dUjdZ, .... However, these

displacements are all known to be zero in accordance with the conditions

of constraint. Hence, we have

(9.6a)

There will always be as many of these equations as there are redundant

reactions so that the reactions can be found.

If the bending moments over the supports are taken as the redundant
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quantities in the case of a continuous beam, then the strain energy can

be expressed as a function of these bending moments Mi, Afo, Ma,

In such case the partial derivatives dU/dMi, dl'/dAU, dU/dM^, will

represent the relative rotations between tangents lo the elastic line on the

two sides of each support. However, from continuity of the elastic line

over each support, we know that these relative rotations are all zero.

Hence, agam

dU
dM,

= 0
,

dU
dAh

= 0,
dU
dMg

= 0 ,. (9.6b)

In general, to find the redundant forces in a statically indeterminate

system, we remove the redundant constraints and replace them by the

corresponding forces. I'hen expressing the strain energy of the system

in terms of the forces and applying the Castigliano theorem, we obtain

eqs. (9.6) from which the redundant forces can be calculated.

To illustrate, let us reconsider the (‘ase of a propped cantilever beam
under uniform load, Fig. 9.16. This is a system having one statically

indeterminate reaction. Choosing the vertical reaction X at B as the

redundant force, the l)endir>g moment at any point along the beam will be

wx^
M. = Xr -~ (a)

and the strain energy is

U p MMr
0 2EI

'

which is a function of X, since is a function of X. Thus, diffei’entiatiug

under the integral sign

dX I

M..
dM,
dX

dx

El
(b)

wherein, from eq. (a),

di\U

dX
(c)

Fig. 9.16
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Substituting expressions (a) and (e) into eq. (b),

IVrfonning the indicated integration, we obtain

3 8'
fi'om which X = Iwl, as obtained previously on p. 233.

Choosing the restraining couple Ma at the built-in end of the beam as

the redundant rea(*1ion, the bending moment at any cross-s(^ction becomes

wlx MaX= -2 r “ T-

3'hen since the angle of rotation of the tangent at A is known to be zero,

the Casligliano theorem gives

.. UAJx ,

dU _
SMa Jo El

wherein, from eq. (d),

dM X __ X

Wa~

(e)

(f)

Substituting expressions (d) and (f) into e(| (e).

Performing the indicated integration, we find Ma = wP/S, as previously

o^^ined on p. 234.

^ EXAMPLE 1. Three bars each of length / and pinned at theii ends are arranged in

a vertical plane as shown in Fig. 11.17. The vertical bar has a cross-sectional area A
and each inclined bar has cross-sectional area A i. A vertical load P acts at joint C
and it is desired to find the ratio A \/

A

of cross-sectional areas to make the tension in

DC numerically equal to the compressive forces in AC and BC.

SOLUTION. Lot X represent the tensile force in DC, chosen as the redundant bar.

Then the compreKSsive force in each inclined bar is {P — X)/y[2. Thus the strain

energy of the system becomes

XH {P-X)H
2AF. 2AiE

In this case, the end D of the vertical bar must have a displacement equal to zero.
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Hence, from the Castigliano theorem,

dU XI (P - X)l

dX^AE AiE

from which X (g)

The statement of the problem requires that

(h)

Eliminating X between eqs. (g) and (h), we find A iI

A

= V2.
EXAMPLE 2. Two wood beams of identical cross-section are supported at their

ends and cross at their mid-points as shown in Fig. 9.1H. When unloaded, they are

just in contact at C. What interactive force X will exist betwTcn the two beams at

C when a vertical load P is applied to the upper beam as shown?

SOLUTION. I'he net downward load on the beam AB is P — X; that on the beam
DE is X. The total strain energy in a simple beam loaded at the middle by a force

Q is, from eq. (h), p. 222,

U =
Q2/>

96E/

Thus the strain energy in the two beams becomes

U = (p - xyp
+

96EI9fyEI
(i)
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Regarding tlie pair of interactive forces A" as a generalized force and observing that

the corresponding disj)la,c('ment is the relative ’ displacement between the mid-

points of the two beams, which is zero because they remain in contact at C, we have

by the Castigliano theorem

^ _ _ (P - xw a;^
(IX

~
4S/s7 4SA7

“

from which A -
PIS

EXAMPLE 3. To reduce deflection, a vsimply supported wood beam AB, loaded at

the middle, is trussed by steel cables Al) and Bl) and a post Cl) arranged as shown
in Fig. 9.19. Neglecting axial shortening of both th(^ beam and the post, find the

compressive force A^ induced in the post. 'Lhe beam has flexural rigidity El and the

cables hava* cross-sectional area A i and modulus of elasticity E\.

soi.UTioN. Th(^ net downward load on th(‘ middle of the beam is Q — P — X and^

the tension in eacdi cable is ^Si = A/2 sin a. Henc(‘. ni'glecting strain t'niTgy of

compression in the beam and post, the strain miergy of the system is

Substituting for Q and and noting that h — ]l sec «, this becomes

_ XH s(>e g

9GA7 8AiFisin^a

Now shorteming of the post is th(' gmieralized displac.ernent corresponding to the

compressive forces X an<l we have specified that this is to be neglected, i.e., that it

is to be taken as zero. Henc(», the Castigliano theorem giv(\s

(P - X)P A7 sec g ^
(IX 4HEf 4 1iEiSin''^a

from which A^ = P
12 sec a El

sin* a A \Ei

Taking a — 20° and EI/AiEiP — 0.01, this gives A" = 0.478P. In such case the

deflection of the beam will be reduced by approximately 50 per cent.

Fig. 9.19
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PROBLEMS

1. For a uniformly loaded beam AB with built-in ends, dcU^rmine the end
moments by using the theorem of Castigliano, .4ns. M

a

= = —wl^/\2.

2. A continuous beam of two equal spans / is uuiforml}' loaded over its entire

length. Find the magnitude X of the middle reaction by using the Castigliano

Theorem. Ans. X = 5ieZ/4.

3. Repeat the preceding problem if the beam carries a con(;('ntratod load P at the

middle of each span instead of the uniform load. Ans. A" — llP/'8.

4. A continuous beam of two equal spans I has unyielding supports at its ends

while the middle support is a coil spring having a spring constant k. The be^im

carries a uniform load of intensity w over its full length. What value should the

spring constant k have in order that all three reactions will bo equal*^ Solve by

^ ,
48E/

usmg the Castigliano theorem, Ans. k -

A uniform continuous bar ABCD is built-in at A and laterally supported at B
as shown in Fig. A. Find the horizontal reactive for(‘e X at B due to the action of a

vertical load P at D as show’n. Neglect the effect of direct compression in the

vertical portion of the bar. Ans. X = ZPa/l.

6. A two-hinged semicircular arch ring is loaded at its crown point C as shown in

Fig. B. Using the theorem of Castigliano, find the horizontal cornp()n(mt A" of the

reaction at A or B. Consider only strain energy of biuiding of the ring. Ans. X =
P/n.

cross-sections 3 X 4 in. and 4 X in. Find the magnitude X of the force trans-

mitted through the roller at C. Ans. X = 1346 lb.
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8. A cantilever beam AB is built-in at B and supported at A by an inclined guy
wire as shown in Fig. D. Find the tensile force N iftduced in the guy wire due to the

applied load P. The guy wire has cross-sectional area A \ and modulus of elasticity

2P
Am. S = =

—

S^J3EI
^ AiEil^

9.5 Limit Analysis of Statically Indeterminate Beams

In all the foregoing di^eussious of statically indeterminate beams, it

has been assunied that the beam behaves elastically throughout. It is

also of interest to investigate the behavior of such beams under loads

which induce plastic bending of the beam, as discussed in Art. 6.1 . Consider,

for example, a propped cantilever steel beam subjected to a load P as

shown in Fig. 9.20a. For any value of this load less than the elastic limit-

value Pe, the bending moment diagram will be as shown in Fig. 9.20b.

From this diagram, it is seen that points B and D are pointe of largest

bending moment. If P is increased beyond the value P®, a plastic hinge

will begin to form first at Z), since the elastic moment Md is numerically

larger than Mb. After this plastic hinge is fully developed at D, the beam
behaves as a statically determinate system represented by a cantilever

beam DB acted upon at D by the load P and a constant moment Mp.
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As the load P is further increased, the negative bending moment Mb
continues to grow until it also attains the limiting value Mp. When this

condition is reached, the team will not resist any further increase in load

and becomes a mechanism with hinges at A
,
Z), ai»d B, which will collapse

freely without further increase in load. The value of the load required

to produce this condition represents the limit load Pl for the beam. This

condition is represented in Fig. 9,20c.

To calculate the limit load, it is not necessary to trace the behavior

from beginning to end as outlined above. We simply assume plastic

hinges at B and at £), each offering constant bending moment Mp, and

then solve for the value of required to maintain equilibrium. Referring

to Fig. 9.20c, the reaction at A in the limit condition will be

p PlI) Mp

Then the bending moincnt at D becomes

M Phab Mpa
Md = itAa = —

j

^
— = Mp,

from which

MAI + g) .

''
a(Z - a)

(a)

since b — I — a. Taking the safe working load Pu = Pi/n, we attain

a factor of safety n against complete collapse.

It will be noted from expression (a) that the limit load Pl is a function

of the ratio a/I defining the position of the load on the span. To find the

most critical position, i.e., the ratio a/l to make Pl a minimum, we set

dPLida = 0. This gives

a2 + 2la -P
from which

? = ^ - 1 = 0.414.

Substituting this value of a/l into eq. (a), we obtain (Pl)min * 5.84 Mp/l
Another method for calculating the limit load Pl for the mechanism

in Fig. 9.20c is to use the principle of virtual work. We take the system in

the limit condition, i.e,, as a* mechanism with' plastic hinges at B and D
(black circles) and a simple hinge at A (white circle) as shown in Fig. 9.21.

The load Pl and the plastic moments at B and D we consider as aciwe

fortes on this movable system. Then a virtual displacement of the sysTern

can be defined by a small vertical displacement By of the hinge D. At the

same time the portion AD will rotate by the angle By/a about the im-
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movable hinge A and the portion BD will rotate by the angle hy/h about

the immovable hinge J5, as shown. During this virtual displacement,

the load Pi, produces positive virtual work Pi^y while the plastic moment
Mh at B produces negative virtual work Mpby/h and those at D, negative

work Mp {by/a + by/b). As a condition of equilibrium of the system, the

algebraic sum of these virtual works must be zero. Hence

Pl by - Mp by/b - Mp(by/a + by/b) = 0,

from which, on canceling

+ Mf. (b)
0 o

Substituting b — I — a, this gives the .same result as expressed by eq. (a)

above.

Limit analysis of statically indeterminate beams as illustrated above

is often much simpler than elastic analysis, since by such procedure the

problem is always reduced to a statically determinate one. It is also

gaining favor among structural engineers because it leads to greater

ec'onomy in design. In dealing with more complicated statically indeter-

minate beams and frames, the question of selecting, in advance, the proper

positions of all plastics hinges is not always a simple one. Sometimes

there will be more than one possible mode of collapse for the system and

each of these must be investigated separately to find the one that leads

to the lowest limit load. These questions belong more prop)erly to special

books on plastic analysis and limit design and will not be discussed here.*

EXAMPLE 1. A two-span continuous beam simply supported at A and Rand
built-in at 0 carries a uniformly distributed load of intensity w over its entire length

(Fig. 9.22a). The beam has a 12WF50 wide-flange section for which the elastic

section modulus Z = 64.7 in ^ Calculate the limit intensity wl of the load for com-
plete collapse of the system.

SOLUTION. As already worked out on p. 142, the plastic section modulus for this

beam is •

Z/. ^ I.IOZ - 1.10 X 64.7 = 71.2 in.’‘

Then assuming a yield stress cTv.p = 40,000 psi, the corresponding plastic bending
moment becomes

Mp = 40,000 = 237,000 ft.-lb.

In the completely elastic condition, the bending moment diagram for the beam
will be as shewn in Fig. 9.22b. From this, we see that plastic hinges are likely to

•See, for example, Plastic Design in Steel, Am. Inst, of Steel Construction, 1959.
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form first at the supports C and B. After these hinges form, the system, on further

increase in load, behaves as two simply supported beams AB and jBC, until another

plastic hinge forms, either at D or at E. Let us assume that D will become the next

plastic hinge. Then the right-hand span becomes a mechanism and the limit load

has been reached. At such time, we have for equilibrium

Md = - Mp = Mp.

from which

Wl
imp 16 X 237,000

12 X 12
26,400 Ib/ft.

With a plastic hinge at B, the reaction at A will be wl/2 — Mp/I and the shear

force at any section distance x to the right of A becomes

V
wl Mp— -WX.

Then to find the section of maximum bending moment in the span AB, we set this

expression equal to zero and obtain

2 xvl
(c)

w lbs per ft

1 i ! 1 M i M 114 i ; I 1 M 1 1 M UTM;
1 Yy

St-

1
* b : -12'

(a)
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The corresponding bending moment at E is

Me
wx^

T (d)

Substituting the value of x from eq. (c) into eq. (d), we obtain

Me
8 2 V

Taking w — 26,400 lb per ft, / = 8 ft, and Mp = 237,000 ft-lb, this gives Me =
109,300 ft-lb. .Since this is less than Mp = 237,000, we conclude that the right-

hand span does collapse first and that Wl = 26,400 Ib/ft is the limit load intensity

for the continuous beam.

PROBLEMS

1. A two-span continuous beam carries a uniformly distributed load as shown in

Fig. A. If Mp is the plastic moment for the cross-section, find the intensity wi of

the limit load. Ana. = ll.G^Mp/P.

2. The continuous beam in Fig. A has a rectangular cross-section 2 in. wide by
4 in. deep, and / = 6 ft. The material is structural steel w ith a yield stress try p

=
40,000 psi. What is the numerical value of ic/,? Ans. wl — 8640 Ib/ft.

3. Calculate the limit value Pl for the statically indeterminate beam shown in

Fig. B, if the plastic moment Mp for the section is given. Ans, Pl = ^Mp/l.

h-

w per unit length

TT TTTT

-Jt-

Fig. a Fig. B

4. Calculate the limiting value Pl for the beam in Fig. B if the load at the end of

the overhang is P/6 instead of P/3. Am. Pl = 1.2Mp/l.

5. If the statically indeterminate beam in Fig. B carries a load P D bls shown
and a load aP at C, what is the value of a to make the limit value of P a maximum
and what is this maximum value? Ans, Pl =» SMp/l when a = i.

6. A solid steel shaft 8 ft long and 6 in. in diameter is buiit-in at A and supported

at P by a steel tie rod of diameter d, Fig. C, The yield stress for the steel (both

Fig. C
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beam and tic rod) is a-y p = 36,000 pai. Calculate the minimum diameter d of the

tie rod required to develop the full collapse load Fr. for the beam and evaluate this

load. Ans. Pl = 81,000 lb with d > in.

7. Calculate the collapse load Pl for the building frame shown in Fig. D if each

vertical member has a plastic moment The ends of these columns are built-m

top and bottom and AB is to be considered as completely rigid. Ans, Pl — 6Mp/L
8. A thin steel ring of mean radius R is loaded as shown in Fig. E. The cross-

section of the ring is such that the plastic moment is Mp. Find the limit load Pl for

the ring. Ans, Pl = ^Mp/R.

Fig. D Fig. E



CHAPTER X

THEORY OF COLUMNS

10.1 Eccentric Loading of a Short Strut

Consider in Fig. 10.1a a short post or strut subjected to an eccentrically

applied compressive force P at its upper end. If such a strut is compar-

atively short and stiff, the deflection due to bending action of the eccentric

load will be negligible compared with the eccentricity e, and the principle

of supperposition applies. The strut is assumed to have a plane of sym-

Fig. 10.1

metry (the o^y-plane) and the load P lies in this plane at the distance e

from the centroidal axis Ox. Such loading may be replaced by its statical

equivalent of a centrally applied compressive force P (Fig. 10.1b) and a

264
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couple of moment M ^ Pe (Fig. 10.1c). The centrally applied load

produces uniform compressive stress ai — P/

A

over each cross-section

as shown by the stress diagram in Fig. 10. lb. Likewise, the end moment
M produces linearly varying bending stress <72 = My/I as shown in Fig.

10.1c. Then, by superposition, the total compressive stress in any fibre

due to combined bending and compression becomes

a
1

(10 . 1 )

where A is the cross-sectional area and I is the moment of inertia of the

section about the if-axis. Also, since we are most concerned here with

compression, compressive stress is treated as positiv^e. The stress diagram

for this superposition of stresses is trapezoidal as shown in Fig. 10.1a.

Taking y = ci, the distance to the extreme fiber on the right, and

introducing the notation r = /A for radius of gyratiotf of the cross

section, eq. (10.1) becomes

Similarly, taking y = —c-i, for the extreme fiber on the left, eq. (10.1)

gives

.... - 3
(i - f

)

Usually we are only interested in the maximum compressive stress as

given by eq. (10.2a). However, it is of interest to note from eq. (10. 2b)

that if the ratio ec2/r^ becomes greater than unity, there will be tensile

stresses in some fibers on the left side of the strut. For example,^ the

cross-section is a rffttangle of width b in the z direction and height h in the

y direction, we have Ci = C2 = h/2 and -- Ij

A

= Then from eq.

(10.2b), we conclude that no tensile stress will be produced by eccentric

compression so long as the condition

6 ® 6
(a)

is satisfied. If condition (a) is not fulfilled so that tensile stress does occur,

it will always be smaller than the compressive stress obtained from eq.

U0.2a), but even so, it may become important in the case of such materials

as brick or concrete, which are weak in tension.

Let us consider now the more genera! case of a strut under the action

of a compressive load P which does not lie in either of the two principal

planes of bending. In Fig. 10.2, let Oy and Oz be the principal axes through
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(7 =

the centroid of the cross-section and

let A be the point of application of

the load P. Denoting the coordi-

nates of this point by m and n, the

^ moments of P about the axes Oy
and Oz will be Pn and Pm, respec-

tivel}'. Then, by superposition, the

compressive stress a for any point in

the cross-section defined by coordi-

nates .r and y becomes

P
,

Pmy
,

Pnz

I +“ "'77’ (10.3)

analogous to eq. (10.1). Equating the right-hand side of this equation

to zero, we obtain an e(}uation for the locus of points of zero stress in the

cro8s-*secti(ui. With the notations r, = ^JIz/A and Vy ~ yjiy/A for radii

of gyration, this ecjuation of the line of zero stress becomes

^ + r^
+ i = 0.

f z I y

(10.4)

which is seen tr) he the etpiation of a straight line, shown in Fig. 10.2

as the line nb. All longitudinal fibers situated in the unshaded portion of

t.he cross-section will he in eompression, while all those situated in the

>'>haded portion will he in lension. The iiitereepts ii and v of this line on

the 2/- and z-axps are found from ecj. (10.4) by setting first z and then y
equal to zero. Thus

n — — rj

m
V = -

n
(b)

)u)r a given eross-section, it is of interest to define a region around the

centroid within whieh the load P will induce compression over the entire

section. This region is called the core of the sf^ction. The determination

of this core for a rectangular section i.s discussed in the following example.
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KXAMPLE 1. Find the equation of the boundary of the core for the case of an
eccentrically loaded strut of rectangular cross-section as shown in Fig. 10.3a.

SOLUTION. Let the point of application of the compressive force P be confined to

the lower right-hand quadrant (m and n both positive). Then to make the line of

zero stress pass through point 5, we set y = -~k/2 and ^ = —6/2 in eq. (10.4).

This gives

mh nb ^

which, with = 62/12 and becomes

6m fin

~k^T (c)

This is the equation of a straight line cd having intercepts 6/fi and 6/6 on the y- and
2-axes, respectively, as shown in Fig. 10.3a. As long as the point of application of

the load P is situated between this line and point P, the fiber stress at B will be

compression. Similar arguments, when the load P is confined to each of the other

three quadrants, can be made and we cimclude that the core of the section is the

shaded rhombus shown m Fig. 10.3a.

A similar argument can be made for the case of a circular ci oss-section of diameter

d and we find that the (‘ore of the section is a (drcle of diameter d/4 as shown in Fig.

10.3b.

PROBLEMS

1. A short strut of square cross-section has a notch c ut in its side as shown in Fig.

A. Calculate the maximum compressive stress cr at the section mn du(i to a centrally

applied load P Ans. (Tmax = HP/aK
2. Solve thf' preceding problem if the cross-section of the strut is a circle of diame-

ter a. Ans. 'Tmax = 9.lP/a2.

3. At the cross-section mn, the C-clamp shown in Fig. B has a rectangular cross-

section 1 X i ii^- Determine the maximum tensile stress a at n if the load P = 400

Ih and the dimension 6 = 3 in. Ans. a — 15,200 psi.

4. A short pie(;e of 10LJ20 channel carries a compressive load the line of action of

which passes through the centroid of the w^eb. If the allowable maximum compres-

sive stress is 16,000 psi, calculate the safe load P. Ans. P = 61,000 lb.

Fig. a Fig. H Fig. C
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5. A short piece of 6 X 6 X 1-in. angle iron carries a compressive load the line of

action of which coincides with the intersection of the middle planes of the legs. If

the maximum compressive stress is not to exceed ] 6 000 psi, what is the safe load P?
Ans, P = 37,500 lb.

6. Solve the preceding problem if the angle iron has an 8 X 4 X 1-in. cross-

section. Ans. P = 37,000 lb.

7. Show that the core of a circular cross-section is circular and find its radius if d

is the diameter of the section. Ans. d/8.

8. A short strut loaded in compression has an equilateral triangular cross-section

with sides of length a (Fig. C). Prove that the core of the section is an equilateral

triangle with sides of length 3a/8 as shown in Fig. C.

9. A short strut has a hollow circular cross-section of outside diameter di and
inside diameter d 2 . Prove that the core of the section is a circle having radius

r. - i(di + d^Vdi).

TO*2 Long Columns; Euler’s Column Formula

Let us consider now the case of a long slender column AB of length /

which is built-in at its lower end A and subjected to a <‘ontrally applied

compressive load P at its upper end R as shown in Fig. 10.4. This column

is assumed to be perfectly straight and of lUiiform (‘ross-section. It is

also assumed that the material is. homogejieous and that it behaves elasti-

cally.

B

A.

Experience shows that when the

vertical load P is small, such a com-

pressed column is laterally stable.

That is, if the upper end B is pushed

I
— slightly to one side by a lateral force,

the column will return to its straight

form as soon as this lateral force is

removed. However, as P is gradually

increased, we observe that at a certain

value of this load, the straight form of

equilibrium becomes unstable and

the column, if pushed to one side,

— / stays there even after the lateral force

is removed. This instability phe-

nomenon is called lateral buckling and

the value of the load at which it occurs is called the critical load, denoted

by Per.

To find the load Per which will cause buckling, we consider the column

in the slightly bent configuration shown in Fig. 10.4b and calculate the

magnitude of the vertical load necessary to hold it there. Choosing

coordinate axes through point A, as shown in Fig, 10.4b, we denote the

deflection at any point x on the elastic line by y and the deflection of

A\

Fig. 10.4
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point B by 6. Then the bending moment at the cross-section defined by
X becomes

M. = P(b - y). (a)

Since we consider only a very small lateral deflection
^
the relation between

bending moment and curvature is (see eq. 8.1, p.l98)

«s- ±M.

For the chosen axes x and y, d^y/dx^ is positive in this case and we use the

plus sign in this expression. Hence the differential equation of the elastic

line becomes

(b)

Dividing both sides of eq. (b) by El and introducing the notation

(c)

it may be written in the form

+ k^y = k^. (d)

This is a linear differential equation with constant coefficients. Its solution

y = f(x) consists of two parts :(1) the general solution of the corresponding

homogeneous equation (zero on the right-hand side) and (2) a particular

solution of the complete equation. It can easily be verified by substitution

that a general solution of the homogeneous equation is

yi == Cl sin kx + C2 cos fcx,

where Ci and C2 are arbitrary constants, while a particular solution of

the complete equation is

2/2 = 5 .

if

Thus the complete solution becomes y = yi + or

y — Cl sin kx + C2 cos kx + 6. (e)

To find the integration constants Ci and C2 ,
we have the boundary

conditions at the built-in end A \

(f)
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Ono differentiation of eq. fe) with respect to x gives

^ = Cl k COR kx -- C^k sin kx.
ox

(g)

Now substituting conditions (f) into eqs. (e) and (g), we find

Cl =.0, Co = -6,

and the general solution (e) becomes

~ 5(1 — cos kx). (h)

This shows that the column bends so that its elastic line takes the form of

a cosine curve, the amplitude 5 of which is as yet undetermined.

To examine rhis question further, we note that when .r = /. v =
Substituting this condition into eq. (h), we obtain

5 = 5(1 — cos kl)

from which

5 cos Id = 0. (i)

From eq (i), we conclude that either 5 - 0 or cos A:/ = 0. If 5 = 0, the

c'olumn stands in the straight vertical (‘ontiguration of equilibrium and

no limitation is imposf'd on the magnitude ()f the load F. On the other

hand, if cos A7 — 0, i.e.. if

A7 - (j)

where n is an odd integer, tlien the column can also be in equilibrium

with any small deflection 5 at the top. The smallest value of P for whieh

this can c»ccur will be obtained by taking n = I in ecj. (j). Then, using

the notation (c). w(' obtain

4,
/ = IT,

Ef 2

from which

Per =
T^EI

4/2
• (10.5)

This is Euler's column formula for the case of a slender column built-in

at its base and free at the top. For all values of P < we must have
5 = 0 and the straight configuration of equilibrium shown in Fig. 10.4a

is said to be stable. If point B is pushed to the side and then released,

the column will return to the vertical position. If P = P^^, equilibrium

can exist for any small value of 5 and the vertical configuration is said
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to be indifferent or neutral. In this case, if point B is pushed to the side

and then released, the column simply remains in the slightly defle(‘ted

position. If P > Per, and point B is pushed slightly to the side, the deflec-

tion increases indefinitely and the vertical eciuilibrium configuration is

said to be unstable. Thus the value Per as defined by eq. (10.5) represents

the maximum load that the column can carry; it is sometimes called the

Euler load for the column.

Examination of eq. (10.5) shows that the critical load for a given column
is proportional to the flexural rigidity El and inversely proportional to

the square of the length I of the column. It will also be noted that the

critical load is independent of the compressive strength of the material.

Thus two geometrically identical slender columns, one of high-strength

alloy stc^l and the other of ordinary structural steel, will fail by buckling

at approximately the same value of the load P, since the moduli of elasticity

are approximately the same. It must therefore b(' realized that the

‘‘strength^' of a long column is in no way dependent upon the strength of

its material in compresvsion, but only on its geometry and the stiffness of

the material.

Equation (10.5) shows also that the strength of a long column may be

increased by increasing the moment of inertia / of its cross-section. With-

out increasing the cross-sectional area, this may be done by distributing

the material as fax as possible from the principal axes of the cross-section.

Hence tubular sections are more economical for compression members
than solid sections. By diminishing the wall thickness of such sections

and in(!reasing the transverse dimensions, the stability of the column may
be increased. There is a lower limit for the wall thickness, however, below

which the wall itself may become unstable and, instead of buckling of the

column as a whole, there will be buckling of its longitudinal elements

which brings about a corrugation of the wail, called local buckling.

If we dc not limit our attention to the case where n -
1, eq. (j) is seen

to define an infinite number of values for the critical load. Thus, in general.

_ n^i^EI
(k)

Taking n = 1, 3, 5, . ,
we see that the values of Per are in the ratio

1:9:25:. . . . Correspondingly, eq. (h) for the elastic liiie'becornes

2/ = (1)

and we see that as n is increased, the deflection curve has more and more

inflection points. Two of these deflection curves, for ri - 3 and n = 5,

pre shown in Fig. 10.5. Although they represent theoretically possible
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Fig. 10.5 Fig. 10.6

inodes of buckling for the columns, they are of no practical interest because

the column will always buckle in the finest mode, as represented in Fig.

10.4b, as soon as P reaches the first critical value given by eq. (10.5).

Critical loads for long columns having other end conditions than those

of the simple cantilever column in Fig. 10.4 can easily be obtained from

eq. (10.5). Consider, for example, the long column with pinned ends as

shown in Fig. 10,6a, l"rom symmetry, it may be concluded that in the

first mode of buckling the clastic line will have a vertical tangent at its

mid-point C, Hence, each half of the column is in the same condition

as that in Fig. 10,4 and the critical load is obtained from eq. (10.5) simply

by replacing I by 1/2, Thus

( 10 .6 )

Similarly, for a long column having both ends built-in. Fig. 10.6b, the

hrst buckling mode will be a full cosine wave having inflection points at

D and E, Then each end portion behaves as a simple cantilever column

of length t/4 and we obtain, from eq. (10.5)

Por
P

(10.7)

The case of a column built-in at one end and pinned against lateral deflec-

tion at the other end requires some further consideration and is discussed

m the following example.

EXAMPLE 1. A slender column of length I is built-in at its lower end A and
laterally feupported at its upper end B as shown in Fig. 10.7. Find the first critical

value of the compressive load P.
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SOLUTION. In this case, a horizontal reaction Q wil] be induced at the pinned end
B when buckling takes place. Then the bending moment at section x is

M, - Q{1 - x) - Py,

and the differential equation of the deflection curve becomes

+ <3 a - ^)-

The general solution of this equation is

Q
Cl cos kx -f- Cf sin kx — {I x),

where 4,-

—
- Oj {y)x-m > it)\ctxJ1^0

For determining the constants Ci and C 2 and the unknown
reaction Q, we have the following conditions at the ends

:

Then, from the above equation for y,

01 0
Cl + ^ = 0; Cl cos kl + Cl sin kl = 0; kCi — — 0 .

Substituting the values of Ci and C 2 from the first and third of the above expressions

into the second one, there results

“ sin kl — I cos k1^ = 0.

As long as the critical load has not been reached, there is no buckling and Q is zero.

When the critical load has been reached and buckling is present, Q is no longer zero

and hence the expression within the parentheses must be zero. This gives the

following transcendental equation for determining the critical load:

tan kl == kh

The smallest value of kly different from zero, and therefore of P, which satisfies this

equation is kl - 4.49. Since k^ = P/EI,

P„ - k^EI -
202EI

P

v^EI

(0 .70
*’ (m)

PROBLEMS

1. A 6-ft length of 61-12.5 standard I-beam is to be used as a pin-ended column.

Calculate the critical value of the load, Ans. P„ = 103,000 lb.

2. A 14WF78 wide-fiange steel beam is to be used as a column 45 ft long with the

lower end built-in and the upper end pinned. Calculate the maximum compressive

load that the column can carry. Ans, Pro«x = 428,500 ib.



274 THEORY OF COLUMNS

3. Select an equal-leg steel angle section to serve as a pin-ended column 10 ft long

if the centrally applied compressive load P = 18,000 lb and a factor of safety

n = 2.5 against failure by buckling is required. ^ ns. 4 X 4 X J in.

4. Select a wide-flange steel section to be used as a column with both ends built-in

and of length I — 30 ft if the compressive load P = 80,000 lb and a factor of safety

n = 2.5 against failure by buckling is required. Ans. 8WF28.
5. A slender pin-ended aluminum column 6 ft long is to have a thin-walled circular

cross-section of outside diameter d = 2 in. Calculate the wall thickness t required

in order to attain a factor of safety n - 2 against failure by buckling if the actual

load P — 3000 lb. Ans, < = i in.

6. A pin-ended slender column has a rectangular cross-section with dimensions

b and h. It is laterally supported in the thin direction by rollers at its mid-point C
as shown in Fig. A but is free to slide between the rollers in the direction normal to

the paper. Find the ratio b/h so that the resistance to buckling will be the same in

both of the principal planes. The load P is assumed to be centrally applied. Ans.

b/h = 2.

7. A horizontal rigid bar AB of negligible weight is supported by two slender

steel columns as shown in Fig. B. The column at A has a circular cross-section 1 in.

in diameter and the column at B has a 1 X 2-in. rectangular section. The bar AB
is constrained to move only m the plane of the paper. Find the critical value of the

load Q if X - 1.5 ft. Arts Qcr = 3152 lb.

8. Referring again to the system in Fig. B, find th(^ A alue of x to make Qct a

maximum. What is this maximum critical load? Ans. Qmax = 15,270 lb when
.r = 2,69 ft.

Fig. A Fio. B

9.

A rigid bar AR is pin-supported by a vertical tie rod AE and a slender column

DC built-in at D as shown in Fig. C. The column is made of steel and has a J X 1-

in. square cross-section. If the load P = 1000 lb, find the maximum value of x

consistent with stability of the system. Neglect the proper weight of the bar AB.
Ans. Xm.x = 3.42 ft.

10.

In Fig. D the bars AB, AC, and AD are slender circular steel columns all having

the same flexural rigidity EL They have pinned ends at A and C and built-in ends

at B and D. Calculate the critical value of the vertical load P applied at A . Assume
tt^EI

buckling in the plane of the figure. Ans. For = 3.65—

—
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^.3 Further Discussion of Euler’s Column Formula

The case of a column with pinned ends (Fig. 10.6a) is most frequently

encountered and is called the fundamental mse. Dividing both sides of

eq. (10.6) for this case by the cross-sectional area A and introducing the

notation r = yff/A^ for radius of gyration, we obtain

where the ratio l/r is called the slenderness ratio of the column and o-or, the

critical compressive stress. The curve ABC in Fig. 10.8, plotted from eq.

(10.8) is called Euler's curve. For a column of any given slenderness ratio,

plotted as abscissa, this curve shows the corresponding value of the average

compressive stress (P/A)ori plotted as ordinates, for which the column

becomes laterally unstable.

Since it was assumed that the material behaves elastically at the begin-

ning of lateral buckling, we conclude that eq. (10.8) is valid only if it

gives a value of less than the proportional limit oTp.i of the material.
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Thus, by setting
i ,

we obtain from eq, (10.8), a limiting value of

l/r below w^hieh Euler^s formula does not apply. This is represented by

point B on the curve in Fig. 10.8, and marks the boundary between so-

called short and long columns. Taking structural steel with a proportional

limit cTp.i. = 30,000 psi and a modulus of elasticity E = 30(10)® psi, for

example, we find l/r = \T()00^ = 100. Thus for l/r < 100, the average

compressive stress in a pin-ended steel column will reach the proportional

limit before lateral buckling can occur and eq. Q0.8) is inapplicable. For

this reason, the portion AB of the Euler curve in Fig. 10.8 is shown by a

dotted line; only the portion BC is valid.

The Euler curve for the fundamental case of a column with pinned

ends can be used for columns with other end conditions by introducing

a modified length h. Comparing eq. (10.5) with eq. (10.6), we see that the

modified length of a cantilever column will be h = 2/, where I is the actual-

length of the column. Similarly, from eq. (10.7), we see that the modified

length of a column with both ends built-in will be U = 1/2, while for a

column built-in at one end and pinned at the other, l\ = 0.7/ (see p. 273).

In general, then, eq. (10.8) may be used in the form

<rcT (10.8a)

We have st^en above that for columns having sufficiently high slenderness

ratios, buckling occurs before the average compressive stress can reach

the proportional limit of the material. In all such cases, stability of the

column governs ihe selection of a safe working load and we use the portion

BC of the Euler curve as shown in Fig. 10.9 as a basis of design. As another

extreme, columns having very low slenderness ratios can be expected to

fail due to some kind of weakness of

the material before the critical com-

pressive stress can be reached. This

failure associated with the strength

of the material may result from

crushing, as in the case of concrete,

or yielding, as in the case of struc-

tural steel. In any case, some max-
imum compressive stress can be set

as a limit of strength and the safe

working load chosen accordingly.

This, we can represent in Fig. 10.9

by a horizontal line DF drawn
through the chosen strength limit.

In between the ranges of short columns and long columns there will be a

range of slenderness ratios too small for true elastic instability to govern
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and yet too large for strength considerations alone to govern. Columns
falling within this range of slenderness ratios require special consideration

and are called medium column^. Analysis of their behavior under centrally

applied compressive loads has been widely treated both experimentally and

theoretically, but a discussion of such behavior will not be given here.* A
simple and satisfactory procedure, in these cases, is simply to draw a

straight line EB in Fig. 10,^ and arbitrarily let its ordinates represent the

maximum compressive stress for such medium-length columns. In this way
we obtain the broken line DEBC in Fig. 10.9, which can be used as a basis

of design for a column of any length.

As a specific example, let us consider the case of ordinary structural

steel for which E = 30(10)® psi, ap
i
= 30,000 psi, and cTy p

==?= 40,000 psi,

Then for all practical purposes, the yield stress (jy p will represent the

strength limit of the material for very short columns. Furthermore,

experiments show that l/r == 60 is the upper limit of slenderness ratios for

which a ('olumn can sustain this average compressive stress without

buckling. Thus for slenderness ratios from 0 to 60, we take (Xnuix = p
=

40,000 psi as shown by the line DE in Fig. 10.10 For slenderness ratios

greater than 100, (7,nax = ai^d we use the portion BC of the Pmler

curve. For intermediate slenderness ratios (60 < l/r < 100), the straight

line EB is used. Thus the complete line DEBC in Fig. 10.10 determines

the value of <r,nrtx for any given pin-ended mild steel column.

In discussing working stresses for steel columns, we must consider the

stress given by the diagram in Fig. 10.10 as an ultimate stress. Such a

compressive stress brings the columns to complete failure, either by buck-

ling, yielding, or a combination of both, and the working stress should be

*See Timoshenko and Gere, Theory of Elastic Stability, McGraw-HiJl Book Co., Inc.,

New York, 1960, p. 175.
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taken as where n is the desired factor of safety. The value to be

chostm for this factor of safety depends upon unforeseen or accidental

increases in the load P and also on possible errors in the central application

of this load, as well as possible initial crookedness of the column. A
common value for n in structural work is 2.5.

Experiments show that both errors in central application of the load

and initial crookedness of the column tend to increase with increasing

slenderness ratios. This suggests the use of a variable factor of safety

which is usually increased linearly with l/r. For example, some structural

specifications recommend using a factor of safety n = 2.0 + 0.015 l/r

for 0 < //r < 100, and n = 3.5 for l/r > 100.

In the whole realm of structural design, there is perhaps no situation

that presents so troublesome a question in regard to the proper choice

of a factor of safety as that of columns. As already indicated, this stems

from the fact that inherent inaccuracies in centering the load and in attain-

ing assumed end conditions, as well as initial crookedness of the column,

have a pronoun(;ed effect upon its behavior under compression. Many
thousands of columns have been tested over the years in an attempt to

resolve this question. The results of such tests when plotted as shown in

Fig. 10.11 form a wide band and leave the question of proper factor of

(P/A/kni A
1 \

^ .
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safety very much unsettled. One point, however, is clearly brought out by

these test results; namely, the broken line D5C, constructed as already

explained, represents an upper bound for the test results. This substan-

tiates the theory and leaves the pronounced but indeterminate influence of

imperfections simply to be adequately provided for by the use of a generous

factor of safety.
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PROBLEMS

1. A steel bar of rectangular cross-section 1 X 2 in. is to be used as a column
with pinned ends. What is the shortest length I for which Euler’s equation applies

if E — 30 (1C)® psi and cTp \ = 30,(XX) psi? Ans. I = 28.9 in.

2. Calculate the critical compressive stress for the column described in the pre-

ceding problem if it is 4 ft long. Ans. cr^r ~ 10,700 psi.

3. An extruded nickel steel tube having outside diameter d = 2 in. and wall

thickness t = J in. is used as a pin-ended column 12 ft long. Calculate the critical

compressive stress if E = 30 (10)® psi. Ans. acr = 6300 psi.

4. What is the shortest length / of the column described in the preceding problem

for which Euler’s formula can be applied if <t,> i
= 160,000 psi? I

-- 28.5 in.

5. Calculate the critical compressive stress for the column described in Problem 3,

if the material is extruded magnesium for which E = 6.5 (10)® psi. Ans. acr
="

1360 psi.

6. A steel column with built-in ends is 6 ft long and has a standard 61-12.5 section.

Using the broken line DEBC in Fig. 10.10 and a factor of safetv n - 3, find the safe

load Pu. - 4S,2001b.

7. Solve the preceding problem if the column is built-in at one end and pinned at

the other. = 45,200 lb.

8. C’onstruct a curve similar to the line DEBC in Fig. 10.10 to be used as a basis

of design for columns of extruded aluminum alloy having E ~ 10 (10)® psi, ap i

=

20,000 psi, and a.nux = 30,000 psi. Assume that // r = 30 is the upper short-

column limit and l/r = 70 is the lower iong-c'olumn limit.

10.4 The Secant Formula

Referring to Fig. 10.12, let lus consider the case of a perfectly straight

cantilever column subjected to a compressive load P applied with ec-

P X P

Fig. 10.12
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centricity e. This case differs from that discussed in Art. 10.1 only in the

fact that we now assume the column to be slender so that the lateral

deflections cannot always he considered as small compared with the

eccentricity e of the applied load. As the load P is gradually increased,

the column will start to bend slightly, and for any value of P the deflection

curve w’ill be as shown in Fig. 10.12b.

Choosing coordinate axes x and y as shown and denoting by 6 the deflec-

tion of the upper end, the bending moment at any cross-section defined

by X will be

M* = P(6 + c - y). (a)

Then for sm4ll deflections within the elastic limit of the material, the

differential equation of the elastic line becomes

= P(S+e-y). (b)

Dividing both sides of this equation by El and using the notatit>n

— P
El'

(c)

it may be written in the form

g + = *»(« -f e). (d)

This equation is similar to eq. (d) on p. 269 and its solution is

y = Cl sin kx + cos kx + 5 + e, (e)

Noting that when x = 0: y = 0, dy/dx = 0, we find

Cl = 0, C2 = - (6 + c)

and the solution (e) becomes

-y = (6 + e){ 1— cos kx). (f)

This shows that the deflection curve AB has the form of a quarter cosine

wave.

At the upper end B we have y — 6 w^hen x = Z. Substituting these

simultaneous values into eq. (f), we obtain

5
— cos kl \

cos kl )
(10.9)

For a given value of this equation expresses the relation between the

lateral deflection 5 and the load P, indirectly defined by fc = yjP/EI.
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Taking e = 0, we see that 5 = 0 for any value of kl < ir/2, i.e., any

value of P < Per (see eq. 10.5, p. 270). But when kl - t/2, i.e., when

P = Por, the deflection becomes indeterminate; it can have any small

value. These observations agree with those already reached in Art. 10.2

for the case of a centrally loaded column. However, for any small value

of c > 0, eq. (10.9) gives a definite value for d so long as P < P^ and

shows that 6 increases without limit as P approaches Per. The load-

deflection relationship expressed by eq. (10.9) is seen to be nonlinear.

For a chosen value of the eccentricity e and a given column, eq. (10.9)

can be represented graphically as shown in Fig. 10.13. For e = 0, the

load-deflection curve is represented by the two straight lines OAB. No

p

deflection takes place for P < P^r and at P = Per the deflection is in-

determinate. For e > 0, but small, the load-deflection relation will be

represented by the curve OCB. For small loads, the deflection increases

slowly but as the load approaches the critical value, it increases rapidly

and tends' toward infinity.

For small values of kl « ir/2, i.e., for values of P « Per, we may take

cos fci s= 1 —
2 ^

in eq. (10.9). Then

_ _ {kiy/2
“

1 - (kiy/2 ~

or, since k = \P/EIy

*-iir (g)
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This is seen to agree with the deflection of a cantilever beam
loaded by a couple M = Pc at the free end (see Case 5 of

Table 8.1, p. 212). This justifies the treatment of eccentri-

cally loaded short struts as discussed in Art. 10.1.

In the present case of an eccentrically loaded long column,

it is important to note that there is no proportionality be-

tween the load P and the deflection 5 that it produces; hence

the method of superposition cannot be used. An axially ap-

plied load P when acting alone produces no lateral deflection,

but when acting in company with a bending couple Pe, it

produces also some bending and the resulting deflections are

greater than the bending couple alone would produce. This

magnification is especially pronounced if the axial force is

near the Euler value.

All of the foregoing discussion can be applied also to the

fundamental case of a pin-ended column eccentrically loaded

as shown in Fig. 10.14. From symmetry conditions, the

tangent to the elastic line at (7 remains vertical and each

half of the column is in the same condition as the column in Fig. 10.12.

Hence, upon replacing I by 1/2 in cq. (10.9), we obtain, for the deflec-

tion 6 of the mid-point C of the elastic line,

where I is now the full length of the pin-ended column.

The maximum bending moment in Fig. 10.14 occurs at the mid-section C
and has the magnitude

Afmax = P(5 + e). (i)

Substituting expression (h) for 5, this becomes

M„„ = Pe sec ~ (j)

The corresponding maximum compressive stress on the concave side of the

column at C is

Substituting expression (j) for Mmmx and using the notation r » for

radius of gyration of the cross-section, this becomes

ffmM = J 1 + ^ sec j- (10.10a)
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If k is replaced by yjP/EI, we have

<Tn.ax = I 1 + 72 VZ^)]
(10.10b)

Equation (10.10) represents the so-called secant formula for an eccentrically

loaded slender column. It gives the maxinnim compressive stress in terms

of the average compressive stress P/A^ the eccentricity ratio ec/r’^^ and the so-

called Euler o.ngle li/2. If the column is short, and the load P is small, we

have sec kl/2 = 1 ,
and eq. (10.10) reduces to the same form as eq. (10.2a)

of Art. 10.1.

If wc set some limit on say o-mAx = o-y p. in the case of structural

steel, we may then calculate the corresponding average compressive stress

which will first produ(‘e yielding in the most severely stre.ssed fibers. For

this purpose, eq. (10.10) i.< written in the form

(10 . 11 )

For any chosen eccentricity ratio, we may solve eq. (10.11) by trial and

error and plot a curve which shows, as a function of //r, the value of P/

A

at which yielding lirst begins in the most stressed fibers. A family of suc^h

curves for several values of the eccentricity ratio cc/r^ and tor ay p
=

40,000 psi is shown in Fig. 10.15.

We usually consider the value of PiA for which yielding in an extrenu^

fiber begins as the limit load for a steel column. Having found this value

for a given column from the graph in Fig. 10.15, or troni eq. (10.11), the

(P/A )kps

Fio. 10.15
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safe average compressive stress will be obtained by dividing the obtained

value by a suitable factor of safety n.

If desired, the factor of safety can be incorporated directly into eq.

(10.11) as follows. Let denote the safe working load, and n the required

factor of safety. Then the compressive load which would bring the extreme

fiber stress to the yield point will be nP^,. Substituting this for P in eq.
(10.11)

,
we obtain

K
A

i
1

^ ItiP10 \
1 +758®*=

(10 . 12)

Comparison of this equation with eq. (10.10) shows that the introduction of

nPu, in place of P in the denominator of eq. (10.10) takes proper account of

the fact that amax does not increase linearly with P.

The transcendental character of the secant formula makes it rather

difficult to solve, trial and error procedures usually being necessary. Such

procedure is illustrated in the following example.

EXAMPLE 1. A wide-flange steel section (Fig. 10.16a) is to be

selected for a column 25 ft long and having pinned ends. The
column is to carry a centrally applied load Pi = 100 kips and a

bracketed load Pa = 50 kips, the latter applied on the principal

axis 2-2 of the section at a distance of 10 in. from axis 1-1,

Fig. 10.16b. Select a suitable section such that the column
will have a factor of safety n = 2.5 against failure by yielding

(o-y p. = 40,000 psi).

SOLUTION. The two loads applied as shown in Fig. 10.16b

can be replaced by a single load P = 150 kips applied with

eccentricity e = 3.33 in. as shown in Fig. 10.16c. Then to use

the secant formula as a basis of selecting the required section,

we write it in the form

o-yp P Pe (I lnP\

where Z is the section modulus and 7 the moment of inertia of

the section. By trial and error, we now look for a WF section

which will make the right side of eq. (1) equal to or less than
the leftside, i.e., equal to or less than cry,p,/n = 40,000 -s- 2.5 = 16,000 psi. Using
Table B.2 of Appendix B, we find

For a 14WF68 section: Right side = 13,500 psi.

For a 14WF61 section: Right side * 15,270 psi.

For a 14WF53 section: Right side = 18,160 psi.

This indicates that the 14WF61 section is suitable so far as bending in the principal

plane of loading is concerned. We assume that buckling in the plane of smaller

flexural rigidity is prevented.

Fig. 10.16
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PROBLEMS

1. A 14WF142 section sU^el column is 25 ft long and has pinned ends. It carries a
centrally applied load Pi = 420,000 lb and a bracketed load Pz = 50,000 lb on axis

2-2, 19 in. from axis 1-1, see Fig. 10.16. Using the secant formula, calculate the

maximum extreme fiber stress. Ana, o-max “ 15,900 psi.

2. If the yield stress for steel is <Ty „ = 40,000 psi, what factor of safety does the

column in the preceding problem have against failure due to yielding? Ans. n = 2.4.

3. A 6-ft length of steel pipe having outside diameter d = 2^ in. and wall thick-

ness t = ^ in. is to be used as a pin-ended column. The compressive load P is

applied at the rim of the cross- section, i.e., with eccentricity e = 1.0 in. Calculate

the value of P which will produce yielding (<ry p. = 40,000 psi). Ans. P = 62001b.

4. Calculate the safe compressive load P for a steel column 6 ft long with pin-end

conditions if the cross-section is a 4 X 4 X 1-in. angle section and the load P is

applied along the line of intersection of the planes of the legs. The required factor of

safety against failure by yielding is n = 2 and cts .p. = 40,000 psi. Ans. P^ = 7250

lb.

5. A 12WF72 section is used for a pin-ended steel column 10 ft long. It carries a

centrally placed load Pi = 100 kips and an eccentric load Pi which acts on axis 1-1

and 4 in. away from axis 2-2, see Fig. 10.16. Using the secant formula with <ry p
=

40,000 psi and n = 2.5, find the safe value of Pi. Ans. Pi = 60,200 lb.

6. A 12WF45 section is used as a pin-ended steel column 16 ft long. It supports a

compressive load applied with an eccentricity ratio ec/r* = 0.2 in the plane of least

flexural rigidity. Calculate the safe load if n = 2 and ay = 36,000 psi. Ans.

Pu. = 136,400 lb.

7. An 8WF40 section is used for a pin-ended steel column 16 ft long. The load P
acts on axis 2-2 with an e(‘cen tricity c = 3 in. Calculate the magnitude of P which

will produce yielding if (7y p = 36,000 psi. Ans. Py.p == 190,500 lb.

8. A column made of steel pipe is 12 ft long, built-in at the bottom end and pinned

at the top. The outside diameter of the pipe is 3.5 in. and the inside diameter is 3.0

in. Assuming ay = 36,000 psi and an eccentricity ratio ec/r^ = 0.25, find the safe

load P, if the desired factor of safety against yielding is n = 2.0. Ans. Pv, = 27,600

lb.

10.5 Representation of Imperfections by Equivalent Eccentricity

In Art. 10.3 it has been pointed out that the behavior of a column under

compressive load is very much affected by imperfections such as slight

crookedness of the column axis, errors in centering the load, uncertainty as

to end conditions, etc. The extent of these imperfections varies sufficiently

from one column to another to produce the rather wide scatter of test

results when represented as shown in Fig. 10.11. To appreciate the in-

fluence of imperfections on the strength of a column, it must be observed

that they result in the line of action of the load not coinciding exactly with

the axis of the column, thus introducing more or less bending action in

addition to direct compression. On this basis it seems logical to conclude

that the behavior of a real imperfect column undfer load will be similar to

that of a perfectly straight ideal column loaded with a suitable eccentricity e.
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This suggests that the secant formula derived in Art. 10.4 could be used

als(' as a basis of design for supposedly straight centrally loaded columns,

simply by choosing an appropriate value of the eccentricity ratio eo/r-

to account for the effect of imperfections. While such a procedure still

leaves unanswered the question of the proper value of cc/r^, it offers a

rational means to represent the effect of imperfe(‘tions rather than to

simply allow for them by an overlarge factor of safety as suggested on p. 278.

To select a suitable value of eejr^ to account for imperfections, recourse

must be had to the results of tests made on actual columns. As a result of

such experiments, a value ec/r- = 0.25 is commonly recommended for pin-

ended columns as used in ordinary structural work. This does not mean
necessarily that every column is expected to be this imperfect, but rather

that no column is likely to exceed this degree of imperfection. That is, if

the results for the columns tested were plotted on the diagram in Fig. 10.15*

the points would all lie above the curve labeled eejr^ = 0.3. The single

curve for ec/r^ = 0.25 and for Oy p. = 40,000 psi is shown agaiii in Fig.

10.17a. This curve may be used as a basis for the design of structural steel

columns. For such a column of any given slenderness ratio //r, the cor-

responding ordinate of the curve shows the value of the average compressive

stress P!

A

for which yielding of the mosi stressed fibers in compression can

be expected to begin. The (‘orresponding safe value would be this P/A
divided by the desired factor of safety n. Since the curve already takes ac-

count of the effect of imperfections, a safety factor n = 2 may be con-

sidered as adecaiate.

Since lack of straightness of a column can be expected to increase with

the length, it is sometimes preferred to allow for imperfections by using an

eciuivalent eccentricity e which increases linearly with the length I of the

column. On the basis of test results on steel columns, a commonly recom-

mended value is e/l = 1/400. In such case the secant formula becomes

1 -f
— • -

^400 r

(a)

where the ratio c/r depends on the shape of the cross-section. For a solid

circular cross-section c/r = 2, for a rectangular cross-section c/r = for

a thin-walled hollow circular cross-section c/r = ^|2y and for an /-section

iKjnding in its plane of greatest flexural rigidity, c/r — 1. Two curves DE^

plotted from eq. (a) for c/r = 1 and c/r = 2, are shown in Fig. 10.17b

where the yield point cjy.p = 40,000 psi. These curves may be used as a

basis for design of steel columns in the same manner as was explained above

in connection with the curve in Fig. 10.17a.
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Fig. 10.17

The use of such curves as those in Fig. 10.17 based on the secant formula

represents the most rational approach to the design of centrally loaded steel

columns. We have seen that the load which such a column can safely carry

is influenced by the impenections, the strength of the material, and the

inherent aspect of instability. Each of these factors is rationally repre-

sented in the secant formula. The effect of imperfections is accounted for

by the chosen eciuivalent eccentricity of load; the strength of the mateiial

itself, by the chosen value of o-y.p; and the inherent aspect of instability,

by the appearance of P/A in the secant term. Thus the secant formula

blends the cases of short, medium, and long columns into one continuous

range and obviates the necessity to make these classifications as was done in

Art. 10.3.
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The strongest objection to the secant formula is its transcendental

character which necessitates solution trial and error. However, if such

curves as those in Fig. 10.17 are at hand,' the selection of a safe load for a

given column or of a suitable column to carry a given load becomes a very

simple matter.

EXAMPLE ] . The column shown in Fig. 10.7, p. 273, has length / = 8 ft and a

square box section 4 X 4 in. outside dimensions and wall thickness r= J in. The

material is steel with Cy p. = 40,000 psi. Using the curves in Fig. 10.17b and a

factor of safety n = 2, find the safe value of the compressive load P.

SOLUTION. The geometric properties of the cross-section are A =3.75 in.^

I = 8.84 in.^ r = yil/A = 1 .54 in., c = 2.0 in. The effective length of the column

is /i = 0.7 X 96 = 67,2 in. Thus l/r = 43.6 and c/r = 1.3. Interpolating between

the curves DE in Fig. 10.17b for c/r = 1.3, we find {P/A)^ p = 33,500 psi, from

which Py p. = 33,500 X 3.75 = 12.5,500 lb. Then with a factor of safety n = 2, we

have P«, = 62,750 lb.

PROBLEMS

1 . Using the design curves in Fig. 10.l7b and a factor of safety n = 2, find the

safe load for a piiMmded steel column 4 ft long and having a solid circular cross-

section of diameter d = 2 in. Ans. Pw = 28,300 lb.

2. A 3 X 3 X J-in. steel angle section is used as a column 10 ft long with built-in

ends. Using the design curves in Fig. 10.17b with a factor of safety n = 1.5, find

the allowable magnitude of the compressive load. Ans, Pu. = 15,900 lb.

3. A 12-ft length of steel tubing has a circular cross-section of 4 in. outside diame-

ter and wall thickness t = in. Assuming pinned ends and using the curve in Fig.

10.17a, find the limiting average compressive stress P/A that the column can carry.

Ans, (P/A)y p
= 20,000 psi.

4. A structural steel column 40 ft long is built up of

four 2 X 2 X angle irons held together with diag-

onal lacing to form the square cross-section shown in

Fig. A. Assuming that the lacing is adequate to make
the column perform as one with a solid section, and
that it has pinned ends, find the safe compressive load

Pu, on the basis of the curves in Fig. 10.17b with a fact

or of safety n = 2.5. Ans. Pu, = 18,800 lb.

5. Using the curve EF in Fig. 10.17a and a factor of

safety n = 2, find the safe compressive load Pu, for a

pin-ended steel column if it has a standard 81-23 section

and is 12 ft long. Ans. Pu, = 28,200 lb.

6.

What is the maximum length I that the pin-ended column in the preceding

problem can have tfj carry a compressive load P = 40,000 lb with a factor of safety

of 2? A 715 . / = 10 ft.

10.6 Empirical Column Formulas

Because of the objections to the transcendental nature of the secant

formula, many simpler but wholly empirical formulas have been proposed
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as substitutes for it. Such formulas usually give the allowable average

compressive stress {P/A)u, as a function of the slenderness ratio //r, with-

out specifically indicating the factor of safety that is used.

Straight Line Formula. One of the most commonly used empirical

column formulas is the straight line formula

(3).

where <Tw is an allowable working stress for the material in compression and

a is a numerical factor. For pin-ended, centrally loaded structural steel

columns, a Chicago Building Code recommends = 16,000 psi and a = 70

so that eq. (10.13) becomes

7) = 16,000 - 70 -• (10.13a)
A / w r

The use of this formula is limited to (30 < l/r < 120). For l/r < 30,

{P/A)u> = 14,000 psi and for l/r > 120, the Euler formula (eq. 10.8) should

be used with a factor of safety n = 2.7.

The Parabolic Formula. In order to make greater allowance for the effect

of imperfections for the more slender columns, a parabolic formula is often

used, such that

(j).
- ’ -

i-r)’

where again ctu- is an allowable working stress in compression and d is a

numerical factor. For centrally loaded pin-ended structural steel columns,

the American Institute of Steel Construction (1947) recommends =

17,000 psi and /3 = 0.485 so that

= 17,000 - 0.485 (^y- (10.14a)

The use of this formula is limited to (0 < l/r < 120). For l/r > 120, the

Euler formula (eq. 10.8) should be used with a suitable factor of safety.

Rankine-Gordon Formula. Still another empirical formula proposed for

pin-ended, centrally loaded columns is the Rankine-Gordon formula

(10.15)
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where is an allowable working stress in compression and y a numerical

factor. A common form of this formula for structural steel columns is

18,000

1 H
—^ 18,000

(10.15a)

to be used only for 0 < l/r < V20.

For purposes of comparison, each of the foregoing empirical formulas for

steel columns is represented graphically in Fig. 10.18, together with the

Euler curve (n = 2) and the secant formula (ay = .30,000 psi, ec/r^ == 0.2,

and n — 2). 'Faking the secant curve as a basis of comparison, we see that

the straight line formula, eq. (10.13a), is somewhat more conservative while

both (he parabolic curve and the Rankine-Gordon curve are less con-

s(*rvati\e

Many empirical formulas for columns of materials other than structural

steel are available for design purposes. For example, a formula of the

straight line type intended for design of pin-ended aluminum alloy columns

in the aircraft industry is

Use of this formula is limited to the range 0 < l/r < 83. For l/r > 83, the

Euler formula is to be used.

For pin-ended cast-iron columns, the New Y'ork Building Code (1917)

specifies an allowable average compressive stress

= 9000 - 40 1 (10.13c)

for 0 < l/r < 70. Owing to the weakness of cast-iron in tension due to

bending, it should not be used as a material for columns having l/r > 70.
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For wood columns of rectangular cross-section, the Forest Products

Laboratory has proposed a special formula based on the results of many
tests. For short columns^ having an unsupported length not greater than 10

times the smaller lateral dimension, the allowable average compressive

stress shall be

(10.16a)

where values of S for different varieties of timber are given in Table A.2 of

Appendix A, p. 343. For medium columns^

where K == E being the modulus of elasticity in bending as given

in the table. Use of this formula is limited to the range (10 < l/b < K).

When l/b = if, we see that (P/A)u, = 25/3. For long columns (l/b > K),

Euler^s formula is to be used with a factor of safety n. = 3. Thus

P\ _
A j.

^
36(i/6)’

(10.16c)

Values of 5, P, and K for common structural grades of timber, kept dry,

are to be found in the table mentioned above.

The empirical formulas discussed above are all intended for

centrally loaded columns, the reduction in allowable average com-

pressive stress with increasing l/r being intended only to allow^ for

imperfections. In the case of columns carrying bracketed loads or,

in general, intentional bending as well as compression, the Ameri-

can Institute of Steel Construction has proposed an empirical

procedure which avoids the difficulties connected with the trial

and error solution of the secant formula. To explain this, we refer

to the pin-ended column in Fig. 10.19, where P is the axial load

and M is an end moment. Neglecting the effect of the lateral de-

flection 5 on the bending moment at C, the maximum compressive

stress would be ‘

Fiq, iq.iq

_ P
,
M

^ ^
^

where Z is the section modulus with respect to the principal axis about

which bending takes place Dividing both sides of this equation by crmay,

we obtain

P/A ^M/Z
(a)
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Now if only the centrally applied loads P were acting, i.e., if M * 0, we
could logically take (7max = o-c the allowable average compressive stress

given by one of the empirical column formulas, say the parabolic formula,

eq. (10J4a). On the other hand, if only the end moments M were acting,

i.e., if P = 0, we would take (Tmax = the allowable working stress for

the material in pure bending. For the combined loading, we arbitrarily

replace amax in the first term on the left side of eq. (a) by (Tc, and (Tmax in the

second term by at, and then require that the sum of the two terms shall not

exceed unity. Thus

P/A
,

M/Z
^ ^

<Te (Th

(10.17)

The use of the lower working stress ae in the first term is presumed to correct •

for the additional bending moment P5. In calculating the value of (To from

the parabolic or other empirical formula, the least radius of gyration of the

cross-section should be used regardless of the plane of the end moments M.

EXAMPLE L Repeat the solution of Example 1 of Art. 10.4, using condition

(10.17) instead of the secant formula. The working stress in bending is ah * 20,000

psi,

SOLUTION. The total compressive load P =«« 160 kips and the end moments
M « 500 in.-kips. For a suitable section, we try first the 14WF68 section already

considered on p. 284. For this section « 20.0 in.*, Z * 103 in.*, and rmin * 2.46

in. Then l/r « 300 + 2.46 * 122 and the parabolic formula, eq. (10.14a), gives

a, = 17,000 - 0,486 (122)* « 9800 psi.

Accordingly the left side of expression (10.17 )become8

7500 4860

9800 20,000
"

This being so nearly equal to unity, we many consider the 14WF68 section satift-

factory.

EXAMPLE 2. Using the Forest Products Laboratory formulas, select a Douglas
Fir timber of rectangular cross-section to be used as a pin-ended column of length

Z * 14 ft if the axial load P * 60,000 lb.

SOLUTION. From Table A.2 of Appendix A, p. 343, we find for Douglas fir:

8 « 880 psi and K « 27.3. If the column were very short, the required cross-

sectional area would be A - P/S - 60,000/880 * 68.2 sq in. This then would
require an 8 X 8-in. cross-section, which suggests that for a long column we try

first a 10 X 10-in. section. Then from eq. (10.16b)

838 psi.
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With this working stress, the safe load P * 838 X 100 = 83,800 lb, which is too

large. For an 8 X 10-in. section, eq. (10.16b) gives

and the safe load is 777 X 80 * 62,200 lb. This indicates that the 8 X lO-in.

section is adequate.

PROBLEMS

1. Using the A.I.S.C. formula, eq. (10.14a), select a WF-beam section to be used

as a fixed-end column 25 ft long if the axial load P * 200,000 lb. Arw. 12WF50.

2. Using the A.I.S.C. column formula, eq. (10.14a), find the safe axial load P for

a steel pipe 16 ft long and having pinned ends if the outside diameter is 12.75 in. and

the inside diameter is 12.00 in. Ana. P = 234,000 lb.

3. Solve the preceding problem, using the straight line formula, eq. (10.13a).

Ana. P « 188,500 lb.

4. A 12WF45 beam section is to be used for a cantilever column built-in at the

lower end, free at the top, and 8 ft long. Using the Rankine-Gordon formula, find

the safe load P axially applied. Ana. P •= 154,000 lb.

5. Using eq. (10,13b), with a factor of safety n * 2.0, find the maximum length

I of a pin-ended aluminum alloy pipe (outside diameter 3 in. and wall thickness i in.)

to carry an axial load P = 15,000 lb. Ana. L.x = 48 in.

6. A steel pipe having a wall thickness t « J in. is to be used as a pin-ended column

18 ft long to carry an axial load P «= 100 kips. Using the straight line formula, eq.

(10.13a), find the required outside diameter of the pipe. Ana. d = 7.14 in.

7. A hollow cast-iron pipe with wall thickness ^ = 1 in. is to be used as a pin-

ended column 12 ft long and is to carry an axial load P =* 175,000 lb. Find the

required outside diameter of the pipe. Ana. d = 9 in.

8. What is the safe load P for a 10 X 12-in. shortleaf pine column 25 ft long if it

has pinned ends? Ana. P « 58,500 lb.

9. What is the safe axial load P for an 8 X 10-in. spruce column if it is (a) 6 ft

long, (b) 12 ft long? Ana. (a) 51,200 lb.; (b) 48,200 lb.

10. A 12WF72 beam section serves as a pin-ended column 10 ft long. It carries

an axial lead Pi * 100 kips and an eccentric load Pa acting on axis 1-1, 4 in. from

axis 2-2. Using condition (10.17), find the safe magnitude of the eccentric load Pa-

Ana. Pi - 77,200 lb.

11. I^lect a 12-in. WF steel section to serve as a pin-ended column 16 ft long if it

is to carry a load P 80,000 lb. with eccentricity e 6 in., bending in the plane of

the web. Use condition (10.17) with (Xc determined from the parabolic column

formula and o-t = 20.000 psi. Ana. 12WF45.
12. A 3U60 steel channel section is to be used as a pin-ended column 4 ft long.

The compressive load P is applied on axis 1-1 in the middle plane of the web.

Using eq. (10.17), with ae calculated from the Rankine-Gordon formula and ffh

18,000 psi, find the safe load P. Ana P — 8900 lb.



CHAPTER XI

MECHANICAL PROPERTIES OF
MATERIALS

11.1 The Tensile Test

The preceding chapters dealt with the methods of analyzing the stress

distribution produced by various kinds of forces on structures. Knowing
the stresses, the designer must then select the material and the dimensions

of the structure in such a way that it will safely withstand various loading

conditions in service. For this purpose it is necessary to have information

regarding the elastic properties and strength characteristics of structural

materials under various stress conditions. The designer must know the limits

under which the material can be considered as perfectly elastic for various

stress conditions, and also the behavior of the material beyond those limits.

Information of this type can be obtained only by experimental investigations.

Material.s-testing laboratories are equipped with testing machines* which

produce certain typical deformations of test specimens, such as tension,

compres.sion, torsion, and bending.

Experiments show that test results are sometimes affected by the size

and shape of the test specimen. Thus to make the results of tests com-

parable, certain proportions for test specimens have been established and

are recognized as standard. The most widely used of all mechanical tests of

structural materials is undoubtedly the tension test. The standard tensile

test specimen in the United States Ls circular, with i-in. diameter and 2-in.

gage length, so that

^
= 4 or J = 4.5lV^,

where A — '7rd-/4 is the cross-sectional area of the specimen.

*For a description of materials-testing machines and a bibliography on the subject see

the article by J. Marin in M. Hetenyi ed., Handbook of Experimental Stress Analysts,

New York, 1950.
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The length of the cylindrical portion of the specimen is always somewhat

greater than the gage length I and is usually at least, I + d. The ends of the

specimen are generally made with a larger cross-section in order to prevent

the specimen from breaking in the grips of the testing machine, where stress

conditions are more severe because of local irregularities in stress distribu-

tion. A cylindrical specimen with I — JOd is shown in Fig. 11.1, which also

shows the spherical seats in the grips of the machine, used to insure central

application of the load.

Tensile test machines are usually provided with a device which auto-

matically draws a tensile test diagram representing the relation between the

load P and the extension 5 of the specimen. Such a diagram exhibits im-

portant characteristics of the material. Fig. 11.2, for example, shows a

series of tensile test diagrams for carbon steel with various contents of

carbon. It can be seen that as the carbon content increases, the ultimate

strength of the steel also increases, but at the same time the elongation

before fracture decreases and the material has less ductility. High-carbon

steel is relatively brittle. It follows Hooke's law to a high value of stress

and then fractures at a very small elongation. On the other hand, a mild

steel with a small carbon content is ductile and stretches considerably

before fracture.

Fig. 11.3 represents the tensile test diagram for mild structural steel.

From this diagram the important characteristics such as yield point,

ultimate strength^ and amount of plastic elongation can be obtained.
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In determining the proportional limit

j

sensitive extensometers are

necessary in order to detect the slightest deviation from a straight line in

the tensile test diagram. Obviously the position found for this limit

depends considerably on the sensitivity of the instruments. In order to

obtain greater uniformity in results, a specified amount of permanent aet

or a certain deviation from proportionality is often taken as the basis for

determining the proportional limit. The International Congress for Testing

Materials at Brussels (1906) defined the proportional limit as the tensile

stress at which the permanent set is 0.001 per cent.

The yield point is a very important characteristic for structural steel. At

the yield point stress, the specimen elongates a considerable amount with-

out any increase in load. In the case of mild steel this elongation may be

more than 2 per cent. Sometimes yielding is accompanied by an abrupt

decrease in load, and the tensile test diagram has the shape shown in Fig.

11.3. In such a case the upper and lower limits of the load at a and 6,

divided by the initial cross-sectional area, are called the upper and lower

yield points, respectively. The position of the upper yield point is affected

by the speed of testing, by the form of the specimen and by the shape of the

cross section. The lower yield point as already discussed in Art. 2.2 is

usually considered a true characteristic of the material and therefore is used

as a basis for determining working stresses.

Owing to the relatively large stretching of the material at the yield point

it is not necessary to use sensitive extensometers to determine this point. It

can be determined with the simplest instruments or can be taken directly

from the tensde test diagram. For structural carbon steel the stress at the

yield point is about 55-60 per cent of the ultimate strength. Structural

steel with about 1 per cent silicon has a yield point stress about 70-80 per

cent of the ultimate strength. The ultimate strength for the silicon steel is

about the same as for the carbon steel. Such a high value for the yield point

justifies the usual practice of taking higher working stresses for silicon steel.

A sharply defined yield point is a characteristic not only of structural

steel but also of materials such as bronze and brass. There are other

materials, however, which do not have a pronounced yield point. For

these materials the stress at which the permanent set reaches the value 0.2

per cent is sometimes arbitrarily called the yield point. It must be kept in

mind that the yield point defined in this manner does not represent a

definite physical characteristic of the material but depends upon the

arbitrarily chosen permanent set.

The ultimate strength is usually defined as the stress obtained by dividing

the maximum load on the specimen (point c in Fig. 11.3) by the initial cross-

sectional area. This quantity also is often taken as a basis for determining

the working stresses.



THE TENSILE TEST 297

The area under the tensile test diagram Oacde (Fig. 11.3) represents the

work required to produce fracture. This quantity is also used as a char-

acteristic property of the material and depends not only on the strength but

also on the ductility of the material.

The ductility of a metal is usually considered to be characterized by the

elongation of the gage length of the specimen during a tensile test and by the

reduction in area of the cross-section where fracture occurs. In the first

stage of plastic elongation, from a to c in Fig. 11.3, the specimen elongates

uniformly along its length. This uniform elongation is accompanied by a

uniform lateral contraction, so that the volume of the specimen remains

practically constant.* At point c the tensile force reaches a maximum
value, and further extension of the specimen is accompanied by a decrease

in the load. At this stage of plastic elongation the deformation becomes

localized and necking begins, the specimen taking the shape shown in

Fig. 1 1.4. It is difficult to determine accurately the moment when
necking begins and thereby establish separately the magnitude of

the uniform stretching and the magnitude of the elongation due

to necking. It is therefore customary to measure the total increase

in the gage length after the specimen has fractured. The elonga-

tion is then defined as the ratio of this total elongation of the gage

length to its initial length. In practice the elongation at fracture

is usually given in percentage. If I is the original gage length and

5 the total elongation, the elongation at failure in percentage is

X Fig. 11.4

€ = y 100. (a)

This elongation is usually taken as a measure of the ductility of the material.

Elongation obtained in this manner depends on the proportions of the

specimen. The increase in the gage length due to necking is a large part of

the total increase and is practically the same for a short gage length as for a

long gage length. Hence the elongation defined by eq. (a) becomes larger as

the gage length decreases For steel, the elongation obtained for specimens

with I = 5d is about 1.22 times the elongation for a specimen of the same

material with I = lOd. Experiments also show that the shape of the cross-

section affects the local deformation at the neck and hence affects the

elongation of the specimen. This shows that comparable results With

respect to elongation can be obtained only by using geometrically similar

specimens.

*The small elastic deformation in which the volume does change can he neglected in

comparison with the comparatively large plastic deformation.
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The reduction in area at the cross-section of fracture is expressed as

follows:

Q = (b)

in which Ao is the initial cross-sectional area and the final cross-sectional

area at the section where fracture occurs.

11.2 Yield Point

The early portion of the tensile test diagram in Fig. 11.3 is show'n to a

larger scale in Fig. 11.5, as a stress-strain diagram. The shape of this

diagram at the yield point depends noticeably on the mechanical arrange-'

ment of the testing machine. If extension of the specimen is produced by an

increase of distance between the grips of the machine moving at a uniform

speed, the sudden plastic stretching will somewhat decrease the tensile

force in the specimen, and a sharp peak A in the diagram will be obtained.

If an elastic spring is inserted in series with the specimen, the slope of the

curve AB of the diagram can be reduced as shown by the broken line AB\.

On the other hand if the tensile load is applied directly to the specimen, the

tensile force at yielding will be affected by the inertia of the load in sudden

motion, and small vibrations may appear on the diagram.

In order to study in more detail the de-

formations w^hich occur at the yield point,

specimens with polished surfaces have been

used. Such experiments show that at the

time the tensile stress drops from point A to

point B (Fig. 11.5) fine, dull lines begin to

appear on the surface of the specimen.

These lines are inclined about 45° to the

direction of tension and are called Lueders^

lines* (see Fig. 2.2, p. 27). With further

stretching, the lines increase in width and

in number, and during stretching from B to

Bi they cover the entire surface of the specimen. Instead of polishing,

sometimes special paints (called stress coats) are used to indicate Lueders’

lines. The paints are brittle and cannot sustain large deformations; hence
they crack during loading and indicate the pattern of Lueders' lines.

Studies V ith a microscope show that Lueders' lines represent the inter-

•These lines were first described by W. Lueders, Dinglers Polytech. J., 1854

Fig. 11.5
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sections with the lateral surface of the specimen of thin layers of material

in which plastic deformation has occurred while the adjacent portions of the

material remain perfectly clastic. By cutting the specimen and using a

special etching, the thin plastic layers in the interior of the specimen can be

made visible. Under a microscope it is seen that these layers consist of

crystals which have been distorted by sliding.

Experiments show that the values of the yield point stress and the yield

point strain depend upon the rate of strain. The curves in Fig. 11.6 show

stress-strain diagrams for mild steel for a wide range of rates of strain

{u = de/dt = 9.5 X 10~^ per second to = 300 per second). It is seen that

not only the yield point but also the ultimate strength and the total elonga-

tion depend greatly upon the rate of strain. In general, these quantities in-

crease as the rate of strain increases.

To explain the sudden stretching of steel at its yield point, it has been

suggested* that the boundaries of the grains consist of a brittle material

and form a rigid skeleton which prevents plastic deformation of the grains

at low stress. Without such a skeleton the tensile test diagram would be

like that indicated in Fig. 11.7 by the broken line. Owing to the presence

Fig. 11.6 Fig. 11.7

*See P. Liidwik and Scheu, "Werkstoifanschuss,” Ver. deiU. Ing. Ber., No. 70, 1925.
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of the rigid skeleton, the material remains perfectly elastic and follows

Hooke’s law up to point A, where the skeleton breaks down. Then the

plastic grain material suddently obtains the permanent strain AB, after

which the material follows the usual curve BC for a plastic material. This

theory explains the condition of instability of the material at the upper

yield point. It also accounts for the fact that materials with small grain

size usually show higher values for the yield stress. As a result, such

materials undergo more stretching at the yield point, as defined by the

length of the horizontal line AB in Fig. 11.7. In addition, the theory

explains the fact that in high-speed tests the increase in 3nield point stress

is accompanied by an increase in the amount of stretching at yielding,

as shown by the curves in Fig. 11.6.

11.3 Stretching of Steel Beyond the Yield Point

During stretching of a steel specimen beyond the yield point, the material

hardens and the stress required for stretching the bar increases as shown

by the portion BC of the stress-strain diagram, in Fig. 11.8. Elongation

of the specifnen is combined with uniform reduction of the cross-sectional

I I \ I I J I c

0 10 20 30

Elongation (per cent)

Fig. 11.8

area so that the volume of the specimen remains practically constant.

The work done during stretching is transformed largely into heat, and
the specimen.becomes hot. Calorimetric measurements show that not all of

the mechanical energy is transformed into heat, however; part of it remains

in the specimen in the form of strain energy. Owing to differences in

orientation of the crystals, the stresses are not uniformly distributed
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over the cross sections, and after unloading, some residual stress and a

certain amount of strain energy remain in the specimen.

If after unloading we load the specimen a second time, we will find

that its yield point stress is raised. This characteristic is shown in Fig.

11.9, which represents a tensile test diagram for mild steel. After stretching

the bar to the point C it was unloaded. During unloading, the material

followed approximately a straight-line law, as shown by the line CD on

the diagram. When the load was applied to the bar a second time, the

material again followed approximately Hooke’s law and the line DF wsu9

obtained. At point F, which corresponds to the previous loading at C,

the curve abruptly changed character and traced the portion FG, which can

be considered a prolongation of the curve BC. This represents a raising

of the 3deld point due to previous stretching of the material. If several

days are allowed to elapse after the first unloading, then upon reloading a

still higher yield point may be obtained, as indicated by the dotted line

at F'. Fig. 11.10 shows the results of a tensile test of die-cast aluminum.

Elongation ( por cent

)

Fig. 11.10Fig. 11.9
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The initial proportional limit of the material was 5600 psi. After stretching

the specimen 2 per cent, the proportional limit upon reloading was found

to be 20,000 psi and the yield point about 21,000 psi.

More complete investigations show that the time which elapses between

unloading and reloading has a great influence on the stress-strain curve

during reloading. If reloading begins immediately after unloading, ac-

curate measurements show that there are

deviations from the straight-line law at

very low stress, and the proportional

limit is greatly lowered. But if a con-

siderable interval of time elapses between

unloading and reloading, the material

recovers its elastic properties completely.

Fig. 11.11 shows curves obtained for mild

steel which indicate that if reloading

follows in ten minutes after overstrain,

the material does not follow Hookers law,

but after five days it has partially re-

covered its elasticity and after twenty-

one days it has almost completely re-
Fig, 11.11

covered it.

Experiments also show that if the material is subjected to mild heat

treatment after unloading, say in a bath of 100°C, the recovery of elastic

properties occuirs in a much shorter interval of time. Fig. 11.12 shows the

results of tests made on a steel bar. The initial tensile test is represented

by the curve A. Curve B represents reloading of the same bar ten minutes

after unlording, and considerable deviation from Hooke's law is noticeable.

Elongation ( per cent

)

Fig. 11.12
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Curve C is the diagram obtained with the same bar after a second unloading

and after heat treating at 100®C for four minutes. In this case the material

has completely recovered its elastic properties.

The phenomenon of strain hardening due to plastic deformation is

encountered in many technological processes such as rolling bars and

drawing tubes and wires at low temperature, cutting sheet metal by shears

and drawing, and punching holes. In all these cases the part of the material

which undergoes plastic deformation becomes harder, and its ductility

is greatly reduced. To eliminate this undesirable effect of strain hardening

it is customary to anneal the material, which restores the initial ductility.

Sometimes the strain hardening of ductile materials is of practical use

in manufacturing. It is common practice to subject the chains and cables

of hoisting machines to a certain amount of overstrain in order to eliminate

undesirable stretching of these parts in service. The cylinders of hydraulic

presses are sometimes subjected to an initial internal pressure sufficient

to produce permanent deformation of the walls. The strain hardening

and the residual stresses produced by this pressure prevent any permanent

set in service. Overstraining of the metal is sometimes u.sed in the manu-

facture of guns. By stretching the metal in the wall of a gun beyond the

initial yield point and afterwards subjecting it to a mild heat treatment,

the elastic properties of the material are improved and at the same time

initial stresses are produced which combine with the stresses produced by

the explosion to give a more favorable stress distribution. Turbine discs

and rotors are sometimes given an analogous treatment. By running these

parts at overspeed, a permanent set is obtained around the central hole,

which raises the yield point of the material and produces initial stresses

which are in a favorable direction. Die-cast aluminum fans are sometimes

subjected to overstrain at the bore to prevent any possibility of their

loosening on the shaft in service. Considerable plastic flow of the metal is

sometimes produced in pressing the hubs of locomotive wheels onto their

axles, and this has proved to have a favorable effect. Copper bars in the

commutators of electric machinery are subjected to considerable cold work

by drawing in order to give them the required strength.

In using overstrain in this manner to raise the yield point and improve

the elastic properties of a structure, it is necessary to keep in mind: (1) that

the hardening disappears if the structure is subjected to annealing tempera-

tures and (2) that stretching the metal in a certain direction, while making

it stronger with respect to tension in that direction, does not proportionately

improve the mechanical properties with respect to compression in the

same direction.

The fact that stretching a metal in a certain direction does not improve

the mechanical properties in compression in the same proportion as it
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does in tension must not be overlooked in cases in which the material is

subjected to reversal of stresses. It should also be mentioned that there

are indications that material which has yielded in a particular region is

more sensitive in that region to chemical action, and there is a tendency

for corrosion to enter the metal along the surfaces of sliding. This phe-

nomenon is of particular importance in the case of boilers and other

containers subjected simultaneously to stress and to chemical action.

In constructing a tensile test diagram such as curve ABC in Fig. 11.8 the

tensile load is usually divided by the initial cross-sectional area Ao of the

specimen in order to obtain the conventional unit stress. But for large

stretching there will be a considerable reduction in cross-sectional area;

and to obtain the true stress the actual area A, instead of Ao, should be

used. From the constancy of the volume of the specimen we have

lA, A -^ (a)

and the true stress is

,.5. £(,+.), (b)

To obtain the true stress diagram the ordinates of the conventional dia-

gram must be multiplied by 1 -f- €. In Fig. 11.8 such a diagram is shown by

the broken line. It extends as far as a vertical through point C, where the

load reaches its maximum value. On further stretching of the specimen,

local reduction of the cross-section (necking) begins and e is no longer

constant along the specimen. Then eq. (b) is no longer applicable, since

the stresses over the minimum cross-section are not uniformly distributed.

In such a case, eq. (b) gives only an average value of <r. The average unit

elongation € at the minimum section may be found from eq. (a), which gives

(0

Using the symbol q for the unit reduction of the cross-sectional area, eq. (b),

p. 298, we obtain

A Ao{l - q);

and eq. (c) gives

From eq. (d) the unit elongation at the minimum section can be readily

calculated if the reduction in area of that section is measured. This

quantity is called the effective elongation and is much larger than the

elongation c = S/I determined from the total elongation S of the gage length.
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11.4 Types of Fractures in Tension

In discussing fractures, we distinguish between (1) brittle fracture

,

as in

the case of cast iron or glass, and (2) shear fracture^ as in the case of mild

steel, aluminum and other metals. In the first case, fracture occurs practi-

cally without plastic deformation over a cross-section perpendicular to the

axis of the specimen. In the second case fracture occurs after considerable

plastic stretching and has the familiar cup~cone form, shown in Fig. 11.13.

Fio. 11.13

In discussing these two kinds of fracture, the theory has again been for-

warded that the strength of the material can be described by two char-

acteristics, the resistance to separation and the resistance to sliding. If the

resistance to sliding is greater than the resistance to separation, we have a

brittle material, and fracture will occur as a result of overcoming the

cohesive forces without any appreciable deformation. If the resistance to

Table 11.1 ULTIMATE STRENGTH OF CYLINDRICAL AND
GROOVED SPECIMENS

Ultimate Strength (lb per sq in.)

6

(inches)

Carbon Steel
11

Nickel Chrome Steel

Computed
from

Original

Area

Computed
from

Reduced
Area

Computed
' from

Original

Area

Computed
from

Reduced
Area

1/32 163,000 176,000 103,000

1/16 164,000 177,000 184,000

1/8 143,000 158,000 154,000

Norma) specimen 102,000 227,000 108,000
1

348,000
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separation is larger than the resistance to sliding, we have a ductile material.

Then sliding along inclined planes begins first, and the cup-cone fracture

occurs only after considerable uniform stretching and subsequent local re-

duction of the cross-sectional area (necking) of the specimen.

The preceding discussion refers only to tensile tests of

standard circular specimens of cylindrical shape. The results

obtained with other shapes of specimens are quite different,

as illustrated by the grooved specimen shown in Fig. 11.14.

During a tensile test, reduction of the cross-sectional area at

the grooved section is partially prevented by the presence of

the portions of larger diameter D. It is natural that this action

should increase as the width 5 of the groove decreases. Table

11.1 gives the results of tests obtained with two different

materials: (1) carbon steel with proportional limit 56,000

psi, yield point 64,500 psi, ultimate strength 102,000 psi,

elongation 26i per cent, reduction in area 55 per cent; and (2)

nickel chrome steel with proportional limit, 80,000 psi, yield

point 85,000 psi, ultimate strength 108,000 psi, elongation 27 per cent,

reduction in area 69 per cent. These figures were obtained from ordinary

tensile tests on normal cylindrical specimens with 1/2-in-diameter and

2-in.-gage length. The original cross-sectional area was used in calculating

the stresses. The grooved specimens of the type shown in Fig. 11.14 had

d = i in. and D — in.

The table shows that in all cases the breaking load for the grooved speci-

mens was larger than for the corresponding cylindrical specimens. With

the grooved specimens only a small reduction in area took place, and the

appearance of the fracture was like that of brittle materials. The true ulti-

mate strength of the cylindrical specimens was larger than for the grooved

specimens because fracture of the cylindrical specimens occurred after

considerable plastic flow. This resulted in strain hardening and increased

not only the resistance to sliding but also the resistance to separation.

Similar conditions are sometimes encountered in engineering practice.

An effect analogous to that of the narrow groove in Fig. 11.14 may be

produced by internal cavities in large forgings, such as turborotors. Ther-

mal stresses and residual stresses may combine with the effect of the stress

concentration at the cavity to produce a crack. The resulting fracture will

have the characteristics of a brittle failure without appreciable plastic flow,

although the material may prove ductile in the usual tensile tests.

Because most of the grooved specimen remains elastic during a tensile

test to failure, it will have a very small elongation, and hence only a small

amount of work is required to produce fracture, A small impact force

can easily supply the work required for failure. The specimeri is brittle

I I

H N
I I

1 1

I I

I I

I I

IT

Fig. 11.14
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l)ecause of its shape, not because of any mechanical property of the material.

Ill machine parts subjected to impact all sharp changes in cross-section are

dangerous and should be avoided.

11.5 Compression Tests

The compression test is commonly used for testing brittle materials such

as stone, concrete, and cast-iron. The specimens used in the tests are

usually made in either cubic or cylindric shape. In compressing the speci-

mens between the plane surfaces of the testing machine it is normally as-

sumed that the compressive force is uniformly distributed over the cross-

section. The actual stress distribution is much more complicated, even if

the surfaces are in perfect contact and the load is centrally applied. Owing

to friction on the surfaces of conta(‘t between the specimen and the heads of

the machine, the lateral expansion which accompanies compression is pre-

vented at these surfaces and the material in this region is in a more favor-

able stress condition. As a result, the type of fracture obtained in a com-

pre.ssion test of a cubic specimen of concrete is as shown in Fig. 11. 15. The

nuiterial in contact with the machine reiniiins unaffected* w’hile the material

at the sides is crushed out.

Fig. 11.15

In order to obtain the true resistance to compression of a matiTial such as

concrete, the influence of friction at the surfaces of contact mu.st be elimi-

nated or minimized. For this purpose A Foppl covered the surfaces

of contact with paraffin and found that the ultimate strength was then

greatly reduced. The type of failure was completely different, and cubic
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specimens failed by subdividing into plates parallel to one of the lateral

sides. Another method of eliminating the effect of friction forces is to use

specimens in the form of prisms having a length in the direction of com-

pression several times larger than the lateral dimensions. The middle

portion of the prism then approaches the condition of uniform compression.

A very interesting method of producing uniform compression on cylindrical

specimens as developed in. the Kaiser-Wilhelm Institut is shown in Fig.

11.16. The head pieces of the testing machine and the ends of the cylindri-

Fig. 11.16

cal specimen are machined to conical surfaces with the angle a equal to the

angle of friction. Thus the effect of friction is compensated for by the

wedging action, and uniform compression results.

Compression tests of materials such as concrete, stone, and cast-iron

show that these materials have a very low proportional limit. Beyond the

proportional limit the deformation increases at a faster rate relative to the

load, and the compression test diagram has the shape shown in Fig. 11.17.

Sometimes it is desirable to have an analytical expression for such a dia-

gram. For these cases Bach proposed an exponential law given by the

equation

€ =
e'

(a)

in which n is a number depending on the properties of the material. Bach

found the values n = 1 .09 for pure cement and n = 1.13 for granite.

Compression tests of ductile materials show that the shape of the diagram

depends on the proportions of the specimen. As the dimension in the direc-

tion of compression decreases, the effect of friction at the ends becomes more

pronounced and the compression test diagram becomes steeper. For

example, Fig. 11.18 shows the results of compression tests on copper

cylinders with various ratios d/h of the diameter to the height of the speci-
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men. In compression tests of such ductile materials as copper, fracture

is seldom obtained. Compression is accompanied by lateral expansion

and a compressed cylinder ultimately assuim's the shape of a flat disc.

11.6 Tests of Materials Under Combined Stresses

Leaving the discussion of simple tension and compression tests, let ns

now (U)nsider cases in which the materials are tested under combined

stresses. We begin with a discus.sion of materials tested under uniform

hydrostatic pressure.* Such tests show that, under uniform pressure,

homogeneous materials can sustain enormous compressive stresses and

remain elastic. Tests also show that large pressures produce only small

changes in volume.

Several attempts have been made to produce uniform hydrostatic

tension of materials, but up to now there has not been a satisfactory solution

to this interesting problem

Tensile tests of various steels combined with lateral pressure have show'n

that the pressure lias a great effect on the shape of the neck and on the

reduction in area at the minimum cross-section. Fig. 11 111 shows the

yoke arrangement by whicli tension was applied to specimens within the

1

Fio. 11.19

•The most comprehensive tests of this kind were made by P. W. Bridgman, who de-

veloped a technique for obtairiing enormous pressures, see his books, The Physics of High
VressurBy New York, 1931, and Studies in Large Plastic Flow and Fracture, New York,

1952. A new triaxial stress-testing machine was described by H. A. B. Wiseman and
Joseph Marin, Proc. Am. Soc. Test. Mat., Vol. 54, 1954.
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pressure vessel, l^^igs. 11.20a and h illustrate fractures of medium carbon

steel (0.45 per cent carbon) at atmospheric pressure and at a lateral pressure

of 145,000 psi. Ill the first case the average true stress was 114,000 psi. In

the second case the corresponding value was 474,000 psi. It was also found

that with an increase in lateral pressure the relative extent of the flat part

at the bottom of the cup-cone fracture diminishes; at a certain pressure it

entirely disappears, and the fracture becomes entirely shear fracture.

(a)

(b)

Fig. 11.20

The combination of axial compression and lateral pressure was used by
Th. V. Kirmdn in compression tests of marble. These tests showed that

with increasing lateral pressure marble becomes more and more plastic, and
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initially cylindrical spK'cimons may obtain barreled f(»rms, as shown in

Fig. 11.21.

In studying two-dimensional stress conditions, thin-walled cylindrical

tubes have been tested. By subjecting a lube to axial tension combined

with internal pressure, the yield point stress for various ratios of the two

principal stresses was established for several materials, including iron,

copper, and nickel. The results obtained in this way were in satisfactory

agreement with the maximum distortion energy theory to be discussed in

Art. 11.7.

Fig. 11.21

In practical applications not only the yield point siress but also the

ductility and strain hardening are of great importance in cases of combined

stresses. Unusual cases of failure, such as explosions of large spherical

storage tanks and sudden cracks in the hulls of welded cargo ships, have

recently called attention to these subjects. In both these types of failure,

low-carbon steel plates were used which showed satisfactory strength and

ductility in ordinary tensile tests. But the fractured surfaces of the plates

in the exploded pressure vessels and in the damaged ships did not shcrw

plastic deformation and had a brittle character. Most of these failures oc-

curred at low atmospheric temperatures and under two-dimensional stress

conditions.
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In order to determine the influence of temperature and two-dimensional

stress on the strength and ductility of low-carbon steel, a considerable

amount of experimental work has been done in recent times in various

laboratories. Thin-walled tubes were used to produce two-dimensional

stress (•()nditions. These tubes were subjected simultaneously to axial

tension and internal hydrostatic pressure, so that tensile stresses at in the

circumferential direction and aa in the axial direction could be produced in

any desired ratio a = at>’a,^. Using tubes of medium-carbon steel (0.23 per

cent carbon) with 1.450-in. outside diameter and 0.100-in. wall thickness,

E. A. Davis made tosts’*^ with five difTerfuit values of the ratio rn Fig. 11 .22

shows the types of fractures obtained f or the small values of the ratio n

Fig. 11.22

•See E. A. Davis (Westinghoiis^* Reasearch Laboratories), J. Appl. Mech.^Vol. 12, p. 13,

1945, and Vol. 15, p. 216, 1048
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the cracks were circumferential, and for the larger values they were

longitudinal. By making an additional series of tests it was established

that the transition from one type of failure to the other occurred at the

value n = 0.76. It was found that in the case of circumferential cracks the

fracture occurred along the planes of maximum shearing stress and at true

stresses of about the same magnitude as in the case of flat specimens pre-

pared from the same material as the tubes. In the case of the longitudinal

cracks, rupture appeared to be more brittle. Failure usually started along

the planes of maximum shearing stress, but owing to high stress concentra-

tion at the crack ends, it continued as brittle fracture in the axial plane

without substantial plastic deformation. The maximum shearing stress at

which the longitudinal cracks began was always much smaller than in the

case of circumferential cracks. It seems that the differences in the two

fractures were due largely to the shape of the specimens. In the case of

circumferential cracks the material was much more free to neck down than

in the case of longitudinal cracks and therefore the latter occurred with

smaller local deformation and smaller decrease in load beyond the ultimate

strength.

In experiments at the Univ'ersity of California* tests were made at two

different temperatures using thin-walled tubes of low-carbon steel. The
diameter of the tubes was 5^ in. and the temperatures were 70® F and
— 138® F. The tests at room temperature always gave a shear type of

fracture with considerable plastic deformation. The tests at low tempera-

ture (with n = 1) showed brittle fracture with very small plastic deforma-

tion. This brittleness was attributed to the local stresses at the welded

junctions of the tubes with the end connections.

After these tests with small tubes, large-size tubular specimens of 20-in.

outside diameter and 10-ft length, made of i~in. ship plate, were tested at

70° F and at —40° F, The tests at low temperature, especially with the

ratio n ~
1, showed brittle fracture at stresses much smaller than those

obtained from tensile tests of ordinary cylindrical specimens made of the

same material.

11.7 Strength Theories

The mechanical properties of structural materials are normally deter-

mined by tests which subject the specimen to comparatively simple stress

conditions. The strength of materials under more complicated stress

conditions has only been investigated in a few exceptional cases, such as

those discussed in the preceding article.

•See H. E. Davis and E. R. Parker, J. Appl. Mech
,
Vol. 15, p. 201, 1948.
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In order to determine suitable allowable stresses for the complicated

stress conditions which occur in practic^al design, various strength theories

have been developed. The purpose of these theories is to predict failure

conditions under combined stresses, assuming that the behavior in a simple

tension or compression test is known. By failure of the material is meant

either yielding or actual rupture, whichev^er occurs first.

The most general state of stress which

can exist in a body is always completely

determined by specifying the principal

stresses ai, <t2 ,
and <73 (Fig. 11.23). In

the following discaissioii, tension is con-

sidered positive and compression negative,

and the axes in Fig. 1 1 .23 are chosen so

that the relations between the algebraic

values of the principal stresses are

<7l > a2 > (a)

The maximum stress theorij considers the

maximum or minimum principal stress

as the criterion for strength. For ductile materials this means that yielding

begins in an element of a stressed body when cither the maximum stress

reaches the yield point in simple tension or the minimum stress reaches

the yield point in simple compression. Thus the conditions for yielding are

(^l)y p ^ p.» ur ](o^3)y.p.! “<^3 1)
(IFl)

in which Cy p. and a\. „ are the yield point stresses in simple tension and

compression, res])ectiv(‘ly. Ther(‘ are many examples which contradicr

the maximum stress theory. It has already been pointed out that in simple

tension sliding occurs along planes inclined at 45° to the axis of the specimen

For these planes neither the tensile nor the compressive stresses are maxi-

mum, and failure is caused by shear stres^s instead. It has also been

pointed out that a homogeneous and isotropic material, even though weak
in simple compression, may sustain very large hydrostatic pressures with-

out yielding. This indicates that the magnitude of the maximum stress is

not sufficient to determine the conditions for yielding of the material or

its fracture.

A second strength theory is the maximum strain theory. In this theory it

is assumed that a ductile material begins to yield either when the maximum
strain (elongation) equals the yield point strain in simple tension or when
the minimum strain (shortening) equals the yield point strain in simple

compression.
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Observing that stress in one direction produces lateral deformation in the

other two perpendicular directions, and using superposition, we find for the

three principal strain components of the element in Fig. 1 1.23, the following

expression.s:

*2 = ~ m(<^i + o-s)],

€3 = ^[<rs - mCo*! + CTj)].

( 11 .2)

With condition fa), the first of these equations represents the maximum
strain and the third, the minimum strain. Substituting the yield point

strains o-y.p./J? in tension and in compression for €i and cs, the

criterion of failure according to the maximum strain theory becomes

<T\ — + (Ti) = CT-y.p.
I

or y (11.3)

1(73 - m(<^1 + <^2)!
=

<^'y.p.J

There are many cases in w^hich the maximum strain theory may also be

shown to be invalid. For example, if a plate is subjected to equal tensions

in two perpendicular directions, the maximum strain theory indicates that

the tensile stress at yielding will be higher than the yield point in simple

tension. This result is obtained because the elongation in each direction is

decreased by the tension in the perpendicular direction. However, this

conclusion is not supported by experiments. Tests o<* materials under

uniform hydrostatic pressure also contradict this theory. For this case, the

second of eqs. (11.3) gives

I I

_ ^y p> .

^3 |y p. -
j _

in which era represents the hydrostatic pressure. Experiments show that

homogeneous materials under uniform compression can withstand much
higher stresses and remain elastic.

The maximum shear theory gives better agreement with experiments, at

least for ductile materials which have Uy p
= o''y.p - theory as.sumes

that yielding begins when the maximum shear stress in the material becomes

equal to the maximum shear stress at the yield point in a simple tension

test. Since the maximum shear stress in the material is equal to half
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the difference between the maximum and minimum principal stresses,

and since the maximum shear stress, in a tension test, is equal to half

the normal stress, the condition for yielding becomes

(Ti — <Ts = (11.4)

This theory is in good agreement with experiments and is widely used in

machine design for ductile materials.

To compare the preceding strength theories let us consider the case of

pure shear. For this special case of two-dimensional stress the maximum
tensile, compressive, and shearing stresses are all numerically equal

(see p. 68) and we have

(7i
= — 0*3 = r, 0’2 = 0.

Assuming that the material has the same yield point in tension and com-

pression, the conditions for yielding according to the maximum stress

theory, maximum strain theory, and maximum shear theory, respectively,

are

r>.p. — O'y.p.,

1 +M

Ty,p. —

Taking /x == 0.3, we find the following results for pure shear:

Maximum stress theory . . .... . Tv ,>.
= o^y.D.

(b)

Maximum strain theory . Ty.p. = 0.77(ry.p.

Maximum shear theory ry.p. = 0.50<ry p.

It is seen that the difference between the various theories is considerable

in this particular case. In the design of a circular shaft in torsion, for

example, it is first necessary to assume an allowable value of working stress

in shear r«, = Tma* * ry.pjn. Then the diameter of the shaft may be

found from eq. (4.5), p. 73. Using the three theories discussed above,

the foUowing ratios of the diameters are obtained:

1 : 1.09 : 1.26,

In more recent times, consideration of the strain energy of deformation

per unit volume of the material has been used as a basis of selecting working
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stresses in machine design.* Considering the element in Fig. 11.23 and
applying the same reasoning as for simple tension, we find that the strain

energy per unit volume is

U = + t2<r2 + CafTs).

Substituting the values of the strain components from eqs. (11.2), this

becomes

w = — 2yL{<TiG2 + + O-jCTa)]. (11.5)

As already pointed out, we know that materials can withstand very large

hydrostatic pressure without failure. Hence it is reasonable to resolve

the total strain energy into two parts: (1) the strain energy of uniform

tension or compression and (2) the strain energy of distortion and use,

for determining the limiting stress condition, only this later part of the

strain energy, i.e., the distortion energy. To accomplish this separation,

we use eqs. (11.2). Adding these equations we obtain

ei + €2 + €3 = g^(o’l +0-2+ O-s), (c)

which states that the unit volume change is proportional to the summation

of the three principal stresses. If this summation is zero, the volume change

vanishes and the material is subjected only to the deformation of distortion.

If (71 = (72 = era = p, as in the case of hydrostatic pressure, we have

1 - 2m
fi == €2 = ea = € = —^—p. (d)

There will be no distortion in this case and uniform tension or compression

exists alone.

For the general case, we introduce the notation

^ p (g)

and then divide each of the three principal stresses into two parts as

follows:

= p + (r'h = P + oil = P + o's. (f)

Summing up these three quantities and using eq. (e) we obtain

(t'i + + o's ~ 0.

•See R. E. Peterson, Strm Concentration Design Factors, New York, 1953.
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Since the summation of a'l, (r'2, and (t's vanishes, these stresses produce

only distortion, and eqs. (f) provide a means for dividing the given system

of stresses o-i, 0-2, and 0-3 into two systems ;(1) uniform tension or compression

p, producing only change of volume, and (2) the system of stresses cr'i,

(t'?, and cr'3, producing only distortion.

As an example of the application of eqs. (f) let us consider the case of

simple tension, I"ig. 11.24a. Substituting <t2 = crs = 0 into eqs. (e) and

(f) we obtain

V
:r

(T ] 0- 3 =
0[1

3’

Simple tension in the x direction can thus be resolved into uniform tension

(I"ig. 11.24b) and a combination of pure shear in the xy- and X2-planes

(Fig. 11.24c). It can be seen that the work of the stresses producing only,

distortion (Fig. 11.24c) on the displacements produced by uniform tension

(Fig. 11.24b) vanishes. The strain energies of cases (b) and (c) are thus

independent of each other, and the total strain energy in simple tension is

obtained by adding together the strain energy of uniform tension and the

strain energy of distortion.

(a) (b) (c)

Fig. 11.24

This conclusion also holds in the general case when all three principal

stresses <t\, (J2 ,
and az are acting. From this it follow^s that the straui energy

of distortion is obtained by subtracting the strain energy of uniform tension

from the total strain energy. Substituting

_ cTi + (7'2 + trs

O’! = <72 = <rs = ^

into eq. (11.5) we obtain, for the strain energy of uniform tension alone,

the expression

1 - 2m
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Thus the strain energy of distortion in the general case is

+ cr2^ + — 2n{ai<T2 + cr20's + am)]

1 - 2m

6£ (ai + a^ + 0-3)"

= “ ^2 )^ + (ai - azY + (cTi - as)^]. (11.6)

This equation may now be taken as the basis for predicting failure of

ductile materials having a pronounced yield point stress ay,p, in simple

tension. According to this theory, for the general case of stresses <ri, (^2,

and 0-3, yielding begins when the distortion energy (eq. 11.6) reaches the

value of the distortion energy at the yield point in a simple tension test.

This latter quantity is obtained from eq. (11.6) by substituting

ai = (Ty.p., o’2 = az = 0,

which give.s

Then the condition for yielding based on the distortion energy theory is

(<ri — ()r2)“ + (a2 — az)^ + {ai — as)^ = 2cry.p.^ (11.8)

In the particular case of two-dimensional stress we put 0-3 = 0 in eq.

(11.8) and the condition for yielding becomes

aY — am + a2^ = ay,p}. (11 -9)

Considering, for example, combined axial tension and torsion of thin

tr*bes and denoting by a and t the corresponding stresses, the principal

stresses will be (see eq. 7.7, p. 183)

and the condition of yielding (eq. 11.9) becomes

+ (11 . 10)

In the case of torsion alone we have cr = 0 and eq. (11.10) gives

Ty.p. 0.577(ry.p.,

which is in good agreement with experimental results.

(11 . 11 )
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The condition of yielding given by eq. (11.8) is currently accepted as

valid for ductile materials, and it is assumed that the material begins

to yield when the strain energy of distortion reaches a definite value

(see eq. 11.7).

11.8 Impact Tests

Impact tests are used in studying the toughness of materials, i.e., the

ability of the material to absorb energy during plastic deformation. In

static tensile tests this energy is represented by the area under the tensile

test diagram, and it can be concluded that in order to have high toughness

the material must have high strength and at the same time large ductility.

Brittle materials have low toughness since they have only small plastic

deformation before fracture. The use of such materials in structures is

dangerous since fracture may occur suddenly without any noticeable

deformation.

In discussing various kinds of fractures (see Art. 11.4) it was indicated

that the same material may behave as a brittle or a plastic material,

depending on the external conditions. Considering, for example, such

an important case as mild structural steel, we find that under ordinary

tensile tests, it may have large plastic deformation, while if tested at some

lower temperature it may fracture entirely as a brittle material. Disastrous

examples of such fractures occurred during World War II in the numerous

failures of welded cargo ships.* Subsequent research work showed that the

brittleness temjxjrature of the steel plates used in the hulls of the ships

was in the same range as the service temperature.

To explain the transition from brittle to plastic fracture, A. F. Joffe

distinguished between two kinds of tensile stresses, (1) tensile stress an

producing brittle fracture by separation and (2) tensile stress a, correspond-

ing to the beginning of sliding. In Fig. 11.25 these two quantities are

represented as functions of the specimen temperature t. In Joffe^s exper-

iments the resistance to separation remained practically independent of

temperature, and in Fig. 11.25 the diagram for an is given by the horizontal

line. At the same time the resistance to sliding was influenced considerably

by the temperature of the specimen, and the ordinates of the curve for a,

decrease as the temperature increases. The point of intersection C of the

two curves defines the critical value ter of the temperature. If the tempera-

ture of testing is higher than ter, the resistance to sliding is smaller than the

resistance to separation and the specimen will yield plastically. For

temperatures lower than ter we have an < a,, and the specimen will fail

by a separation fracture without plastic deformation.

•See the paper by Finn Jonassen in W. M. Murray (ed.), Fatigue and Fracture of Metals,

1952.
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There are other important conclusions

which can be obtained on the basis of

the diagram in Fig. 11.25. Let us

consider the effect of speed of loading

on the test results. It is known that

with an increase of speed the resistance

of the material to sliding increases while

its resistance to separation remains

practically constant. As a result of this

the ordinates of the a, curve will in-

crease, and the curve will move to the

new position AiBi (Fig. 11.25) while the

line (Tn remains stationary. Thus the

intersection point of the two curves is

displaced to the right, indicating that with an increase in the speed of load-

ing the critical temperature increases. This conclusion is verified by

impact tests, which give brittle fractures at higher temperatures than in

static tests.

Now assume that the specimen is subjected to torsion. Yielding of the

specimen in shear will begin at about the same value of shearing stress as in

the tension tests, but the corresponding value of the maximum normal

stress oTn, equal in this case to the maximum shearing stress, will be about

one-half of the value of <r„ in a tension test. Hence in constructing, for

torsion tests, a diagram similar to Fig. 11.25, we must take values of the

ordinates of the a, curve about one-half the values for tension tests. As a

result the intersection point C of the curves will be displaced to the left,

and we conclude that in torsion tests the critical temperature must be

lower than in tensile tests. This conclusion is also in agreement with

experiments.

Considering further the influence of the state of stress on the value of

the critical temperature, let us assume that a uniform tension in all three

directions is superposed on simple tension, so that we obtain a three-

dimensional stress condition. It is known that such a superposition does

not affect the value of the maximum shearing stress at which yielding

begins. The value of o-, increases, however, and the ordinates of the cr,

curve in Fig. 11.25 increase and the intersection point C moves to the right.

Thus the critical temperature for the assumed three-dimensional stress

condition will be higher than for simple tension. Similar three-dimensional

stress conditions are produced at the notch in a grooved specimen. Such

specimens have higher values of than in the case of smooth specimens.*

•For more details on stresses at grooves see E. Orowaii’s article in W. M. Murray (ed.),

Fatigue and Fracture of Metals

^

1962.

Tsmperature

Fig. 11.25
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The fundamental ideas regarding the critical temperature at which the

transition occurs from brittle to plastic fracture were extended by N. N.

Davidenkov and applied to various kinds of steel. Using a diagram similar

to Fig. 11.25, he was able to predict the influence of various factors on the

value of the critical temperature and showed by his experimental work
that the predictions were in satisfactory agreement with the experimental

facts. For determining the critical temperature, impact tests were used.

Since in the case of brittle fracture the amount of work required to produce

failure is many times smaller than for plastic fracture, the tests showed at

the critical temperature a sharp change in the amount of energy absorbed.

Fig. 1 1.26 represents the results of impact tensile tests of smooth cylindrical

steel specimens. It can be seen that a sharp change occurs in the energy

absorbed in the interval —ISO^C to — nO°C.
By changing the process of heat treatment the grain size of steel can be

varied considerably, and it is of practical interest to investigate the in-

fluence of grain size on the magnitude of the critical temperature. It is

known that with an increase in grain size the resistance of steel to separation

diminishes. Hence for coarse-grained steels the horizontal line for

(Fig. 11.25) will be lowered and the critical temperature will be higher

than for fine-grained steels. To verify this conclvision, specimens of coarse-

and fine-grained medium-carbon steel (0.23 per cent carbon) were tested

in impact and the results are shown in Fig. 11.27. It is seen that the

critical temperature for the coarse-grained steel was about —95*^0, while

in the case of the fine-grained steel it was — 160°C.

-160 -140 -120 -100

Temperature (®C)

Fig. 11.26

Temperature (®C)

Fig. 11.27

*Soe Davidenkov’s books, Dynam^ical Testing of Metals, 1936, and Problems of Impact

in Metal Study, Ed. Acad. Science, Most^ow, 1938 ("in Russian). The results given in the

following discussion, if not specifically noted, are taken from the latter book.
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The effect of the size of the specimen on the value of the critical tempera-

ture has also l>een investigated. Hut here the simple diagram of lug. 1 1 .25

does not give a (*lear interpretation of the experimental results. With an

increase in dimensions we may expect a decrease in the resistance to brittle

fracture, since the probability of having critical imperfections increases

with volume. Hence for larger volumes the horizontal line for will be

lowered in Fig. 11.25, producing a displacement of point C to the right.

But it also appears that an increase in volume reduces the value of a-, and

the corresponding lowering of the a, curve in Fig. 11.25 results in a dis-

placement of C in the opposite direction. Thus the final result depends on

the relative importance of the two factors. Experiments with smooth

cylindrical specimens indicate that the lowering of the On line is more

important and point C moves to the right, showing that the critical

temperature increases with an increase in volume of the specimen. This

factor must be considered when applying the results of tests on small

specimens to the design of large-sized structures.

' In the preceding discussion we have considered only tensile tests of

cylindrical specimens in which the stress distribution was uniform. Tii

practice, however, notched specimens are used in impact tests and stress

roncerdrations arc present. To investigate the effect of non-uniform stress

distril)ution on the magnitude of the critical temperature, let us Ix'gin

with the case of bending of a smooth cjdindrical specimen. I^xperiments

in bending with static loads indicate that yielding of the steel begins at a

much higher stress than in the case of uniform tension. The yield point

stress is first reached in the thin layer of fibers at the farthest distance

from the neutral axis, and the formation of planes of yielding in those

fibers is prevented by the pre.sence of the adjacent material at lower stress.

The resulting increase in the value of the yield stress must be considered

in applying the diagram of Fig. 1 1 .25 to bending tests, The ordinates of

the (T, curve must be increased, which results in a displacement of the inter-

section point C to the right. The critical temperature, as obtained from

bending tests, will then be higher than the value obtained from tensile

tests. This conclusion agrees with experimental results.

Similar reasoning can be applied to cases of stress concentration produced

by grooves and notches (see p. 4G) and we may expect an increase in

for notched bars.

After this general discussion het us consider the type of impact test

w^hich should be used in practice to determine tcr- The correct determination

of is important in order to avoid the dangerous situation in which the

criti('al temperature of the material is the same as the service temperature

of th(' structure. It is apparent that impact tests at room temperature are

not sufficient and in important situations a series of tests over a range of
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temperatures should be made. A transition curve, similar to Fig. 11.27,

should be constructed and from it determined. When the critical

temperature has been determined, and knowing the service temperature

to of the structure, Davidenkov recommends that the measure of safety

be taken as the ratio

~
(a)

1 n

ill which To and T^r are the absolute temperatures corresponding to to and

4r. This ratio diminishes and approaches zero as To approaches Ter. The

result is a very dangerous situation in which small external impulses may
produce brittle fracture of the structure. On the other hand, the ratio

approaches unity as 7\r approaches absolute zero. In this case brittle

fractures will not occur and it is only necevssary to select the dimensions of

the structure so that it will be strong enough to (*arry the loads without

plastic deformation.

In selecting a reasonable value of the ratio (a) for use in design, the

conditions which actually exist in the structure must be considered.

Such stress raisers as sharp reentrant corners and imperfections in welding

contribute to an increase in ter . An increase in size of the stru(‘ture has the

same effect. To have sufficient safety and to keep the ratio (a) as large as

possible, materials with low values of t^r should be used. The critical

temperature can be lowered not only by changing the chemical content of

the material bid also by proper heat, treatment. A fine-grained steel has a

lower value of Lr than a coarse-grained steel. Considerable interest in

the brittle character of metals at 1o\n temperatures has developcnl recently

in this country, and we can expect an improvement in our knowledge of

this important subject.

11.9 Fatigue of Metals

Machine parts are frequently subjected to varying stresses and it is

important to .kiujw the strength of materials under such conditions. It

is well known that materials fail under repeated loading and unloading,

or under reversal of stress, at stresses smaller than the ultimate strength

of the material under static loads. The magnitude of the stress recjuired

to produce failure decreases as the number of cycles of stress inci'eases.

This phenomenon of the decreased resistance of a material to repeated

stresses is called fatigue, and the testing of a material by the application of

such stresses is called an endurance test.

If md o-jnin arc the maximum and minimum values of the repeated

stress, then the algebraic difference

Tt ~ <r,oax tTniiu (a)
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is called the range of stress. The cycle is coriipietely detiiicd if the range

and the maximum stress are given. The average or mean stress is

“F ^^min) (h)

In the particular case of reversed stress <Jmin = — R = 2a,u&x. and

am = 0. Any cycles -of varying stress can be obtained by sui)erposing a

cycle of reversed stress on a steady average stress. The maximum and

minimum ^^alues of the varying stress are then gi\Tn i)y the following

formulas:

There are v^arious methods of applying the load in an endurance test.

The specimen can be subjected to direct bmsicjn and compression, to

bending, to torsion, or to some combination of these. The simplest way
is by reversed bending. A common cantilever form of fatigue test bar is

shown in Fig. 11.28. The cross-section of the sp(‘cimen is varied along the

I*

-
- 41/4' - --

F'ig. 1 1 2S

length in such a manner that the maximum stress occurs belneen cro.ss-

.sections mn and miUi and is pra(‘ticaily constant within that region. The
effect of stres.s concentrations is eliminated by using a large fillet radius

and by increasing the diameter of the bar near the fill(‘t. The load P
is always downward and the specimen rotates at constant speed. The
stress therefore changes sign every half-revolution, and the number of

cycles of stress is equal to the number of revolutions of the inaclniH', Tlu'

stress is a completely reversed stress, the av(u*ag(' stress being Z(‘ro and

the range of stress twic(^ a^i.is.

By taking several specimens and testing them at various loads P, a

curve such as is .shown in rig. 11 29a can be obtained. ]ler(‘ is repre-

sented as a function of the number of cycles a reqiired to produce fracture.

The curve sho\\n was obtaiimd with mild steel. At the beginning o-.n^x

decreases rapidly as n increases, bur after about 4 million cycles there is no
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longer any appreciable change in <r,r.ux, and the curve approaches asymptot-
ically the horizontal lir^‘ = 27,000 j)si. The stress corresponding to

such an asymptote is called the endurance limit of the material. It is

now the usual practice in endurance tests to plot against log n. In

this manner the magnitude of the endurance limit is disclosed by a definite

discontinuity in the curve. An example of such a curve is shown in Fig.

11.29b.

®'mox

Number of cycles (millions)

Number of cycles

(b)

Fia. 11.29

There is a great differeru^e betweem the fractures of mild steel specimens

lested statically and those tested by alternating stresses. In the first

case considerable plastic flow precedes fracture, and the surfaces at the

ruptured .section show^ a silky, fibrous structure due to the great stretching

of the crystals. A fatigue crack, however, appears entirely different. A
crack begins at some point in the material owing to a local defect or to a

stress concentration produced by an abrupt change in the cross-section.

Once formed, the crack spreads owing to the stress concentrations at its

ends. This spreading progresses under the action of the alternating stress

until the cross-section becomes so reduced in area that the remaining

portion fractures suddenly under the load.

Two zones can usually be distinguished in a fatigue fracture, one due to

the gradual development of the crack and the other due to sudden fracture.

The latter zone resembles the fracture of a tensile test specimen with a
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deep, narrow groove (see p. 306) in which the shape of the specimen prevents

sliding, and therefore fracture occurs as a result of overcoming t he cohesive

forces. This fracture is of the brittle type even though the material is

ductile. In the case of cantilever test specimens (Fig. 11.28) the maximum
stresses are at the outer fibers. Hence the fatigue crack usually starts at

the circumference and spreads towards the center. Where there are stress

concentration^ due to fillets, grooves, or holes, the crack usually starts

at the most highly stressed portion and spreads outward from this point.

In such cases the fracture surface shows concentric* rings with respect to

this starting point. This is a very common type of fracture in machine
parts which have been subjected to alternating stresses. It is thus evident

that the brittle type of fatigue fracture is due to the peculiar mechanism
of fracture, not to crystallization of the material as was once thought.

Fig. 11.30

It is evident from the above discussion that the determination of the

endurance limit for a particular material requires a large number of tests

and considerable time. Hence it is of practical interest to establish rela-

tions between the endurance limit and other mechanical properties which
can be determined by static tests. The large amount of experimental

data accumulated has not yet made it possible to establish such a correla-

tion. As a rough estimate, the endurance limit for ferrous^ metals under

reversal of stresses can* be taken equal to 0.40 to 0.55 times the ultimate

strength obtained in the usual way from a tensile test. When working
with materials whose mechanical characteristics are very well known,
such as carbon steels, estimates of this type can be considered reliable.

Otherwise such estimates are likely to be misleading, and direct endurance
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tests should be used instead. Some results of endurance tests of steels

are givc'u in I 'ig. 1 1 .30 and also in Table A.4 of Appendix A.

In the jnajority of eases, endurance tests are carried out for completely

reversed stresses (o-mux — ffimn), while in many cases in machine design

the stresses vary but are not completely reversed. It is necessary to know

the endurance limits under thes(‘ varying stresses. Wohler was the first

experimenter who studied the phenomenon of fatigue systematically.*

He showed that the range of stress R ne(*essary to produce fracture de-

creases as the mean stress or^, incn'ases. On th(‘ liasis of these tests and of

Bauschinger’s work, Cierber proposed a parabolic* law relating the range

of .stress R and the mean stress (Jm. This is illustrated by the parabolic

curves in Pig. 11.31, in which the mean stress and the range of stress are

expressed as fractions of the ultimate -ti*ength. The range is a maximum
when the stress is completely reversed [<j,n

~ 0) and it approaches zero

when the mean stress appnuiches the ultimate strength. If the endurance

limit tor rev(‘rsed stress and the ultimate strength are known, the endurance

limit for any varying stre.ss (‘an b(‘ obi aim'd from such curve's. Other

investigations show that there is no general law connecting the mean

stress and the range of stress, luir instance, there are materials for which

the relation between R and is ^'presented more accurately bv the broken

lines (doodman law) in Fig. 11.31 than by parabolas.

R

Fig. 11.31

The straight lines OA and OB in Fig. 1 1.31 have a slope of 2 and deter-

mine the region AOB in which the stress changes sign during a cycle,

Out.side this region the stress always remains tension or compression.

Experimentally determined values within the region AOB usually lie

*A. Wohler, Z, Bauursen, Vols. 8, 10, 13, 16, and 20, 1858-70, An account of this work
in English is given in Engineering

^

Vol. 11, 1871; see also Unwin, The Testing of Materials

of Constrvetion, 3d ed., 1910.
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between the parabolas and the corresponding straight lines. When the

stress is always tension or always compression, the values of the range /?,

as found by test, are sometimes not only below Gerber^ parabolas but

also below the corresponding straight lines.

11.10 Fatigue Under Combined Stresses

Most of our experimental information on the fatigue strength of materials

has been obtained under conditions of uniaxial stress, as in rotating bending-

test specimens. But in practical problems we frequently encounter cases of

combined stress, and it is important to know the fatigue strength for

such conditions. To obtain the fatigue strength of various ductile materials

in pure shear, torsion tests were made in which the angle of twist was

reversed. The results of some of these tests are shown* in Fig. 11.32.

For purposes of comparison, the endurance limit in bending is taken as the

abscissa and the endurance limit in shear is plotted as the ordinate. It is

.seen that the ratio of these limits for all the materials tested is very nearly

Endurance limit in bending ( kips per sq in )

Fig. 11.32

*See, R, E. Peterson, Stress Concentration Design Factors^ New York, 1963.
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equal to yjs. This is the value given by the maximum distortion energy

theory for the ratio of the yield point stresses in bending and shear (see

eq, ILll).

Fatigue tests under combined stresses produced by the simultaneous

action of alternating bending and torsion have also been made and the

results are shown in I'ig 11.33. Here again the test results are in good

agreement with the maximum distortion energy theory, as might be

expected, since slip generally prect^des the development of a fatigue crack.

Fio. 11.33

To ijbtain a/i (quation for calculating the endurance limi( ft)r (‘ombined

bending and torsion, we have only to substitute into the corresponding

equation for yielding (eq, 11.10) the value of the endurance limit cte for

reversed bending, in place of ay p ,
which gives

<7^ + 3t^ = (Te^- (a)

The corresponding ellipse is shown in Fig. 11.33, and it is apparent that

the test results are in good agreement with the equation.

Other fatigue tests with biaxial tension or tension and compression,

and with the ratio ai/(X2 remaining constant during a cycle, are also in

satisfactory agreement with the maximum distortion energy theory. Thus

we can use for determining the fatigue limit in the case of complete reversal

of stresses the following equation (see eq. (11.9) p. 319):

(Ti^ — 0-1(72 + 0-2* = (b)
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in which as is the endurance limit for uniaxial stress conditions. Assuming

that ffi > 0-2 and using the notation 0-2 = aci, we obtain from eq. (b)

<71^1 — a + = (Je> i<^)

In the case of pulsating stresses in which the stress varies from zero to

some maximum value, the corresponding uniaxial pulsating stress o-max

should be substituted for (te in eq. (c).

In conclusion, it should be pointed out that the endurance limit for

various materials can be affected by many extraneous factors. For example,

moderate cold-stretching of steel has been found to produce some increase

in its endurance limit. However, when this cold-working is overdone, the

endurance limit may be lowered.

Most fatigue tests are made at room temperature. Some experiments

with fatigue of steel specimens made at lower temperatures (--20°C) have

shown a slight increase in the endurance limit at this lower temperature.

However, tests at higher than room temperature (up to 300°C) showed

no appreciable efh'ct of temperature on the endurance limit.

Fatigue tests on specimens in the presence of various corrosive agents

such as salt water hav(‘ .shown that the enduranc(‘ limit may be greatly

reduced Iw the combined action of fatigue with corrosion. There are

many known cases of failures in service which can be attributed to such

corrosion fatigue such as marine propeller shafts, turbine blades, oil-well

pump rods, etc For this' reason, special corrosion-resistant materials

are fre([uently used in such cases. Protective (boatings and surface cold-

working have also l^een used successfully in guarding against such failures.

Jl.ll Fatigue and Stress C^oneentrations

In discussing the stress concentrations produced by sharp variations in

the cross-sections of bars and shafts (see Art. 2.5) it was indicated that such

stress concentrations are especially damaging in the case of varying stresses.

In machine parts, stress concentrations are always present due to fillets,

grooves, holes, keyways, etc., and experierufe shows that most fatigue

cracks in service begin at points of stress concentration.

Figure 11.34 shows the torsional fatigue failure of a shaft of a large

motor-generator set which unfortunately operated near resonance.’^ The

crack started at the keyway, where a high stress concentration took place,

and gradually developed along the helical path. Figure 11.35 represents a

torsion failure of the shaft of a Diesel-driven generator. A high stress con-

•Tiiese figures are taken from a paper by R. E. Peterson presented at the Conference on

Strength of Material Problems in Industry, at the Massachusetts Institute of Tech-

nology, July 1937.
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Fig, 11.34

centration at the small fillet resulted in several helical cracks, which when

joined together produced the saw-toothed appearance, I’^inally, Fig. 11.36

represents a characteristic fatigue failure of a heavy helical spring. The
crack started from the inside, as theory predicts (see p. 78), and again

fi)llowc‘d the direction of one of the principal stresses. All these pictures

clearly demonstrate the damaging action produced by stress concentration,

and it is clear that this factor must be seriously considered in the design of

machine parts subjected to alternating stress.

Early fatigue tests made with specimens having sharp changes of cross

section showed that there was a reduction in strength due to the stress

concentration, but this reduction was usually smaller than expected from

the magnitude of the calculated stress concentration factor. For instance,

in the case of flat steel specimens with small circular holes subjected to

direct stress, the theoretical factor of stress concentration is 3 (see p. 48).

If the magnitude of the peak stress is the controlling factor in endurance

tests, it would be expected that the tension-compression load required to

produce fatigue failure of a specimen with a hole would be about one-third
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Fig. 11.35

of the load for a spocimrii Avithom a hole. However, experinients showed

that in this ease the reduetion in strength due to the stress eoneentration is

small as compared with the cahuilated effect.

To explain this discrepancy and to give the necc'ss;j.ry information for

designers, a very extensive series of tests were made by R. E. Peterson at

the Westiiighouse Research Laboratories.* Geometrically similar canti-

lever test specimens varying in diameter from 0,1 in. to 3 in., with a fillet

or with a transverse circular hole and of different materials were tested in

special fatigue-testing machines. The results of these tests for specimens

with fillets are given in Fig. 1 1 .37. The smaller diameters of the specimens

are taken a.s ab.scissas while the ordinates represent the ratios kf of the

endurance test loads for plain specimens to the endurance test loads for the

corresponding specimens with stress concentrations. Similar results were

obtained for specimens with transverse holes.

The horizontal lines in Fig. 11,37 give the values of the stress concentra-

tion factors obtained for each fillet size by a direct measurement of strain at

*R. E. Peterson, J . Appl. Meek., Vol, 1, pp.79 and 157, 1933; and R. E. Peterson and

A. M. Wahl, ibid., Vol. 3, p. 15, 1936.
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Fig. 11.36

the points of maximum stress coiicc ntratioii. These values are d(‘signated

by kt and are called theoretical values of stress concentration in the following

discussion. If the fatigue strength of the specimen depends only on the

peak stress, then ki must evidently be equal to kf.

On a basis of his tests, Peterson came to the following conclusions:

(1) In some cases fatigue results are quite close to theoretical stress

concentration values. This conclusion is of great practical importance,

since a general idea seems to exist, based on some early experiments, that

fatigue data for stress concentration cases are always well below theoretical

values, i.e., on the safe side for design purposes.

(2) Fatigue results for alloy steels and quenched carbon steels are

usually closer to the theoretical values than are the corresponding fatigue

results for carbon steels not quenched. It was expected in these tests that

the theoretical values of kt would be reached for all steels provided the

specimens wTre made large enough, but Fig. 11.37 shows that the curves
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for normaliaed 0.45 per cent carbon steel are apparently asymptotic to

values considerably below the theoretical.

Oiometer rf (m )

Kkj. 11.37

(3) With a deca-ease in the size of the specimen, the reduction in fatigue

strength due to a fillet or hole be(‘,onies somewhat less; and for very small

fillets or holes the reduction in fatigue strength is comparatively vsmall.

This can be clearly seen from the curves in h^ig. 11.37.

It can be appreciated that the probkan of reducing the damaging effect

of stress concentrations is of primary importance to designers. Some lower-

ing of stress concentrations can be obtained by a suitable change in design.

For example, a design can be improved considerably by eliminating sharp

reentrant corners and introducing fillets of generous radius, by designing

fiUets of proper shape, by introducing relieving grooves, etc. In Fig. 11.38

are shown methods for reducing the stress concentration at a shoulder of a
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shaft, while maintaining the positioning line AA, The stress can be re-

duced by cutting into the shoulder and introducing a fillet of larger radius

without developing interference with the fitted member, as shown in Fig.

11.38b. If the shoulder height is too small, a relief groove may be used as

shown in Fig. lj.38c.

In Fig 1 1 .39 two different bolt-and-nut designs are shown. In Fig. 11.39a

the nut is in compression while the bolt is in tension. High stress concentra-

tion takes place at the bottom of the thread in the face of the nut, and

under the action of variable forces, fatigue fracture occurs in that plane.

In the lip design. Fig. 11.39b, the peak stress is somewhat relieved because

the lip is stressed in the same direction as the bolt. Fatigue tests show the

lip design to be about 30 per cent stronger.

Fig. 11.39

Somelimes these relieving measures are not sufficient to (diininate fatigue

failures. As an important example let us consider the typical failures which

occur at the wheel seals of locomotive and railroad-car axles, at the wheel or

bearing seats of automobile axles, at the pressed or fitt(‘d bits of long drill

rods in oil-well operations, etc. All these cases of fitted members subjected

to the action of variable stresses have been a constant source of fatigue

failures. Considering, for example, the case of a wheel hub pressed on an

axle, Fig. 11.40a, we can si^e that a high stress concentration combined

with friction is produced at the reentrant corners m and n. During rolling

of the axle a reversal of .stress at points m and n takes place, and finally a

fatigue failure over the cross-section mn, may occur. Stress concentrations

can be so mewhat reduced by introducing raisc^d seats and fillets as shown

in Fig. 11.40b. A further improvement is obtained by introducing the

relief groove a. Although such changes are an improvement, they are not
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)

sufficient in this ca.se. Experience shows that the mere press fit of a hub on

an axle, reduces the fatigiu^ s1reng;th of the axle to less than half of its

initial strength, while the changes shown in Fig. 11.40b raise the fatigue

strength of the axle perhaps no more than 20 per cent. Fo improve this

condition and eliminate fatigue failures, surface cold-rolling of the axle in

the region of stress concentration has beeii successfully applied.

11.12 PhysieaJ Properties of Metals at High Temperatures*

There are many ca.ses in which parts of engineering structures are

subjected simultaneously to the action of stresse s and of high temperatures.

Such conditir)ns are found, for instnn<*e, in [)o\\er plants, chemical indus-

tries, and in the missile industry. Owing to the modern tendency to increase

temperature and pressure in steam power plants and in the oil-refining

iiidusi ries, the (luestioii of t.hf* >lrength f)f matt‘rials at high temperature

has become of practical importance and a considerable amount of research

work has be(m done in this field. Experiments show that the yield point

and ultimate strength of metals in tension depend very much on the

teuiperature. Fig. 11.41 show’s how' thc'se as well as other common mechani-

ca\ properties of a medium carbon steel vary wiih the temperature.

For loads acting over a long pc^riod of time and at high temperatures as,

for instance, the weight of a structure or steam pressure in pow’cr plants, we

need additional information regarding the time effect. Experience shows

that under such conditions a continuous deformation, called creep, may
take place w’hich is the most important factor to lie considered in design.

Although a considerable amount of research worje in this direction has been

done and much more is 4n^w' in progress, the question of the behavior of

metals under high temperature and prolonged loading cannot be considered

completel]^ cleared.

*For further information, see papers ami Inhiiography presented in Symposium 07i the

Effect of Temperature on Properties of Metals, issued jointly the A.8.T.M. and the

A.S.M.E., 1931.
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0 *5

SQ \n

1 -
i 1

Fig. 11.41

In most experiments of this kind, the gradual elongation of materials

under prolonged tension is studied. Tensile test specimens at high tempera-

ture are subjected to a certain constant load and temperature, and the

progressive creep under this load is investigated. The results of such an

experiment when plotted as a time-extension diagram give a curve of the

shape shown in Fig. 11.42. When the load is first applied, there is an im-

mediate elastic extension OA. The specimen then begins to stretch at a

decreasing rate as shown by the portion AB ol the curve. At BJthe rate of

extension reaches a value which remains substantially constant for some

time, that is* along the portion BC of the diagram. At C, the rate of exten-

sion begins to increa.se and fracture finally takes place at point D. For the
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stresses encountered in practice, the portion OB represents a comparatively

short time, while the entire lifetime of the specimen lies within the range

BC. The slope of the portion SC, representing the rate of extension at a

certain stress and temperature, is therefore of the utmost practical interest

because the life of the structure depends on the rate of this extension. If the

tensile stress is decreased, the slope of BC decreases, but there is no conclu-

sive evidence that it will ever become horizontal, that is, that there is a

limiting stress at which the specimen can indefinitely resist the stress and

high temperature. Hence in such cases the design must be based on the

assumption of a (certain duration of service of the structure and of a certain

amount of distortion which can be considered permissible. The working

stresses are chosen so that the distortion of the structure during its lifetime

will not exceed a definite limit, depending on the typo of structure. For

example, in the design of moving parts such as steam turbines, the creep

should nevTr exceed 1 per cent in 100,000 hr (about 11 years) and generally

is limited to a fraction of 1 per cent. Creep rates as high as 1 per cent in

10,000 hr may be used for steam piping and boiler tubes.

The comparative w^orking stresses or creep strengths of certain alloy

steels over a wide range of temperature are shown in Fig. 11.43. These

values, however, may be much affected by variations in grain size, by heat

treatment, and by previous strain hardening and should be used with

(;autioii.

Fia. 11.42 Fig. 11,43
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PHYSICAL PROPERTIES FOR COMMON
STRUCTURAL MATERIALS

TABLE A.l. Average Physical Properties of ('ommoii Metals.

TABLE A.2. Average Physical Properties and Working Stresses of

Structural Timber.

TABLE A 3. Average Physical Properties of Building Stone, Brick and

Concrete.

TABLP] A.4 Mechanical Properties of Steels
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APPENDIX B

MOMENTS OF INERTIA OF PLANE
AREAS

B-1. Moment of Inertia of a Plane Area with Respect to an Axis

in Its Plane

In discussing the bending of beams, one enco\inters integrals of the type

= jy^dA (1)

in which each element of area dA is multiplied by the square of its distance

from the .r-axis and integration is extended over the cross-sectional area A
of the beam (Fig. Bl). Such an integral is called the moment of inertia

of the area A with respect to the x-axis.

Fig. B.l Fig. B.2

In simple cases, moments of inertia can readily be calculated analytically.

Take, for instance, a rectangle (Fig. B2). In calculating the moment of

inertia of this rec tangk with re.spect to the horizontal axis of symmetry x,

we can divide the rectangle into infinitesimal elements such as shown in the

figure by the shaded area. Then

^ = fbdy = ^- (2 )

346
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In the same manner, the moment of inertia of the rectangle with respect

to the 2/-axis is

x-hdx = hb^

12
’

Eq. (2) can also be used for calculating h for the parallelogram shown

in Fig. B3, because this parallelogram can be obtained from the rectangle

shown by dotted lines by a displacement parallel to the axis x of elements

such as the one shown. The areas of the elements and their distances

from the j-axis remain unchanged during such displacement so that Ir it^

the same as for the rectangle.

r

In calculating the moment of inertia of a triangle with respect to the

base (Fig, B4), the area of an element such as shown in the figure is

dA == b— d?/

and eq. (1) gives

The method of calculation illustrated by the above examples can be applied

to any area. The moment of inertia is obtained by dividing the figure into

infinitesimal strips parallel to the axis and then integrating as in eq. (1).

The calculation can often be simplified if the figure can be divided into

portions whose moments of kiertia about the Jixis are known. In such

case, the total moment of inertia is the sum of the moments of inertia of

all the parts.

From its definition, eq. (1), it follows that the moment of inertia of an

area with respect to an axis has the dimensions of a length raised to the

fourth power; hence, by dividing the moment of inertia with respect to a
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certain axis by the cross-sectional area of the figure, the square of a certain

length is obtained. This length is called the radius of gyration with respect

to that axis. For the r- and ^/-axes, the radii of gyration are

rx = (3)

PBOBLEMS

1. Find the moment of inertia of the rectangle in Fig. B2 with respect to the base.

Ans, Ix* * 6/iV3.

2. Find the moment of inertia of the triangle ABC with respect to the axis X'
(Fig. B4). Ans. lx! » - hhy\2 = 6/iV4.

3. Find /* for the cross sections shown in Fig. B5. Arts. For {a), /, * aV12 —
(a - 2A)V12; for (b) and (c), = ba^/l2 - [(6 - hO(a - 2/i)»]/12.

4. Find the moment of inertia of a square with sides a with respect to a diagonal..

Atm. I * 0^/12.

5. Find r, and r^ for the rectangle shown in Fig. B2. A/w. r^ = h/{2‘^); «

V(2V3).
6. Find r, for Fig. B5 (a) and (6),

A

i

Y

i i

Y

T

f

1 A A 1 1

O

t

1

0

r
k r J

t

£
2

X <
^ —

'

(

^ X a

1 h I h u

g

(a) (b) (c)

Fig. B,5

B-2. Polar Moment of Inertia of a Plane Area

The moment of inertia of a plane area with respect to an axis perpendicu-

lar to the plane of the figure is called the polar moment of inertia with

respect to the point, where the axis intersects the plane (point 0 in Fig. Bl).

It is defined as the integral

J=j^j^dA, (4)

in which each element of area dA is multiplied by the square of its distance

from the axis and integration is extended over the entire area of the figure.
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Referring to Fig. Bl, = x* + and from eq. (4)

-L (x* 4* y^) dA = /i + ly (5)

That is, the polar moment of inertia of a plane area with respect to any

point 0 is equal to the sum of the moments of inertia with respect to two

perpendicular axes x and y through the same point.

Let us consider a circular croaS’Section. ,We encounter the polar moment
of inertia of a circle with respect to its center in discussing the twist of a

circular shaft (see Art. 4.1). If we divide the area of the circle into thin

elemental rings, as shown in Fig. B6, we have dA = 27rr dr, and from eq. (4)

Td^
J = r^dr = ^^ (6)

We know from symmetry that in this case /* = 1^; hence, from eqs. (5)

and (6),

J
2

ird'*

64
‘ (7)

The moment of inertia of an ellipse with respect to a principal axis x

(Fig. B7) can be obtained by comparing the ellipse with the circle shown

in the figure by the dotted line.

The height y of any element of the ellipse, such as the element shown

shaded, can be obtained by reducing the height 2/1 of the corresponding

element of the circle in the ratio b/a. From eq. (2), the moments of inertia

of these two elements with respect to the x-axis are in the ratio 6*/a*.

The moments of inertia of the ellipse and of the circle are evidently in the

same ratio; hence, the moment of inertia of the ellipse is

,
ir{2ay raV ...



350 APPENDIX B

In the same manner, for the vertical axis,

the polar moment of inertia of an ellipse is then, from eq. (5),

7r6a®

* 4
(9)

PROBLEMS

7. Find the polar moment of inertia of a rectangle with respect to the centroid

(Fig, B2). Ans. J = bhy\2 + hby\2.

8 . Find the polar moin(Mits of inertia, with respect to their centroids, of the areas

shown in Fig. B5.

B-3. Parallel-Axis Theorem

If the moment of inertia of an area with respect to an x-axis through the

centroid (Fig. B8) i.s knotvn, the moment of inertia with respect to any

parallel x'-axis can he (*alrulated from the equation:

I,. = (10)

in which A is the area of the figure and d is the distance between the axes.

This can be proved as follows: from eq. (1)

Fig. Ji.8 Fio. B.9

The first integral on the right side is equal to /*, the third integral is equal

to AeP, and the second integral vanishes because the x-axis passes through

the centroid; hen^, this equation reduces to (10). Eq (10) is especially
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useful in calculating moments of inertia of cross sections of built-up beams

(Fig. B9). The positions of the centroids of standard angles and the mo-

ments of inertia of their cross sections with respect to an axis through their

centroid are given in handbooks. By use of the parallel-axis theorem, the

moment of inertia of such a built-up section with respect to the x-axis can

readily calculated.

PROBLEMS

9. By use of the parallel-axis theorem, find the moment of inertia of a triangle

(Fig. B4) with respect to the axis through the centroid and paralh'l to the base.

Ans, I = 5AV36,
10. Find the moment of inertia I

j

of the section shown in Fig. B9 if h = 20 in.,

b = i in., and the angles have the dimensions 4 X 4 X i in. Ans.h - (i)20V12 -f

4[5.56 + 3.75(10 - 1.18)2] == 1522 in.-*

11. Find the moment of inertia with respect to the i/-axis of the cross section of

the channel shown in Fig. B.5 if = 2 in., b = 10 in., a = 24 in., = 2 in. Ahh.

I, = 667 in.^

B-4. Product of Inertia^ Principal Axes

The integral

Ixy - ( xydA, (1 1)

in which each clement of the area dA is multiplied by the product of its

coordinates, and integration is extended over the entire area i4 of a plane

figure, is called the product of inertia of the figure. If a figure has an axis of

symmetry which is taken for the x- or y-axis (Fig. BIO), the product of

inertia is equal to zero. This follows from the fact that in this case for any

element such as dA with a positive x, there exists an equal and symmetrical-

ly situated element d.4' with a negative x. The corresponding elementary

products xydA cancel each other; hence integral (11) vanishes.

Fio. B.IO Fig. B.ll
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In the gfeneral case, for any point of any plane figure, we can always find two

perpendicular axes such that the product of inertia for these axes vanishes. Take,

for instan(;e, the axes x and y. Fig. Bll. If the axes are rotated 90° about 0 in the

clockwise direction, the new positions of the axes are x' and y* as shown in the

figure. There is then the following relation between the old coordinates of an

element dA and its new coordinates:

x' = y; y' = -x.

Hence the product of inertia for the new coordinates' is

thus, durmg this rotation, the product of inertia changes its sign. As the product

of inertia changes continuously with the angle of rotation, there must be certain

directions for which this quantity becomes zero. The axes in these directions are*

called the principal axes. Usually the centroid is taken as the origin of coordinates

and the corresponding principal axes are then called the centroidal principal axes.

The centroidal principal axes are of importance since the moments of inertia are

maxima or minima with respect to these axes (see the next article). If a figure has

an axis of symmetry, this axis and an axis perpendicular to it are principal axes of

the figure, because the product of inertia with respect to these axes is equal to zero,

as explained above.

If the product of inertia of a figure is known for x- and 2/-axes (Fig. B12)

through the centroid, the product of inertia for parallel j'- and i/'-axes can

be found from the equation:

/.V = /*., + (12)

The coordinates of an clement dA for the new axes are

x’ = x + a; 1
/' = 1

/ + h.

Fig. B.12 Fig. B.13
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Hence,

Ix'v* = xy dA = (x + a)(y + b)dA

= j
xy dA + j

abdA +J
bxdA

j

The last two integrals vanish because C is the centroid so

reduces to (12).

ya dA.

that the equation

PROBLEMS

12. Find Ix'y> for the rectangle in Fig. B2. Ans. I

13. Find the product of inertia of the angle section with respect to the x- and
j/-axes. Do the same for the xr and yi-axes (Fig. B13).

SOLUTION. Dividing the figure into two rectangles and using eq. (12) for each of

these rectangles, we find

-
4 + ^

•

From the symmetry condition, « 0.

14* Determine the products of inertia hy of the sections shown in Fig. B5 if C is

the centroid.

SOLUTION. For Fig. B5 (a) and (6), Ixy = 0 because of symmetry. In the case of

Fig. B5(c), dividing the section into three rectangles, and using eq. (12), we find

L, = - 2(6 - h,)h~~-

B*5. Change of Direction of Axis. Determination of the Principal
Axes

Suppose that the moments of inertia

/. = / y^dA; Iy= x^dA (a)
. Ja J a

and the product of inertia

/xy = ^ xj/ dA (6)

are known, and it is required to find the same quantities for the new axes

Xi and yi (Fig. B14). Considering an elementary area dA, the new coor-

dinates from the figure are

xi = X cos 0 + y sin 0; yi ^ y cos ^ — x sin 0, (c)
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ill which </> IS ihc angle between x and .ri. Then

/xi = J
dA ==

I'
iy ens

<t>
~ x sin 0)^ dA ^

+ j
X' sin^ 4} dA —j 2xy sin 4> cos ^ dA,

or, l)y using (a) and f/)j,

~ lx COS" 4> + ly sin^ 4> ^ Ixy sin 2</>. (13)

In the same manner

— Ix sin-’ <t> A- 1

V

cos^ 0 + /tv sin 2 4>. (13')

l^y substituting the trigonometric identities, cos 4> == ^(1 + cos 20) and

sin' 0 = ](l — cos 20), eqs. (13) and (13') become

y,, = + k^y cos 2« - sin 2<^ (14)

and

/,,
= cos + /« sin 2«. (140

These equations are very us('ful for calculating /*, and ly^.

The value of 0 which makes /t. a maximum or a minimum may be

found by differentiating in eq. (14) with respect to 0 and setting the

derivative equal to zero. This gives

tan 20 = y—
J V I

X

(15 )
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Substituting this value of 2<t> in eq. (14), one obtains

(ixi)max — 2
^

'^\ j
'

^ (lO)

min

For calculating we find

/,
X\yi dA =j (x cos 0 + y mu c‘os 0 — .r sin <i>)dA

=
I

if sin 0 COS dA - j
sin 0 cos (^dA + j

xy (cos* 0 — sin"^ <t>)dA

By using ("njand (h)

/x... = sin 20 + COS 20. (17)

The angle 0, locating the two porpcndic\iIar axes with respect to which the

product of inertia is zero, maj" be found })y setting = 0 in eci- (17).

The resulting value of tan 20 is that alread.v stated in eq. (15) and shows

that the moment of inertia is a maximum or minimum about the principal

axes (the axes about which the product of inertia vanishes).

The radii of gyration correspondiiig to ^he principal axes are called

principal radn of gyration.

Let us determine, as an example, the directions of the principal axes of a

rectangle through a corner of the rectangle (Fig. B2). In this case

lx' —
;

ly' — ; iz'u' — ^
,

hence, from eq. (15),

2(/i6V3 - bh^/3) 2(62 „

In the derivation of eq. (15), the angle 0 w’as taken as positive in the

counterclockwise direction (Fig. B14), so 0 must be taken in this direction

if it comes out positive. Eq. (d) gives two different values for 0 differing

by 90°. These are the two perpendicular directions of the principal axes.

Knowing the directions of the principal axes, the corresponding moments
of inertia can be found from oqs. (14) and (14').

PROBLEMS

15. Determine the directions of the centroidal principal axes of the Z section in

Fig.-B5rif6 = /ii = 1 in.; 6 = 5in.; a = 10 in. .ln«. 0 = 32'’-05'.

16. Find the directions of the centroidal principal axes and the corresponding

principal moments of inertia for an angle section 5 in. X 21 in. X J in. Ana,

tan 20 = 0.547; = 9.36 in.^• /n.i, = 0.99 m.^
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TABLES

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

B.l. Formulas for Elements of Common Sections.

B.2. Elements of Wide Flange Sections.

B.3. Elements of American Standard I-Beam Sections.

B.4. Elements of American Standard Channel Sections.

B.5. Elements of Equal Angle Sections.

B.6. Elements of Unequal Angle Sections.
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TABLE B-l

Elements or Common Sections

1
h

I

Rectangle, axis of moments through centroid.

A

U

Tz

hh

12

h

VT2

6

/xy = 0

Rectangle, axis of moments through base.

h

Vl "'"T

Triangle, axis of moments through centroid parallel

to base.

h

V18

V
h

3

h
c

-
24

Triangle, axis of moments through base.

_
- iT

h

V6

'"T
£b
A

Ellipse, axis of moments through diameter.

A = Trab
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TABLE B-l {Continued)

Circular Section, axis of moments through diameter.

= "2“ “
*32

Hollow Circular Section, axis of moments through

diameter.

Semi-Circular Section, axis of motnc nts through

bounding diameter.
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Angle sections, elements of, 368
Area-moment method, 204

Axes, principal, 157, 351, 353
Axial strain, 9

Axial stress, 3

Beams, deflection of, 197

deflection formulas for, 212
limit analysis of, 142

of two materials, 145

of unsyinmetrical section, 154

plastic bending of, 139

reinforced concrete, 149

statically indeterminate, 231

stresses in, 114, 127

Bending, l:>eyond yield point, 139

of curved bars, 167

Bending moment, 96

Bending moment diagrams, 104

Biaxial stress, 50, 55

Brittle materials, 49

Brittleness temperature, 320
Buckling of columns, 268

Built-up beams, 133

Castigliano's theorem, 247

Center of shear, 101

Centroids of areas, 358
Channel sections, elements of, 366
Columns, buckling of, 208

empirical formulas for, 288
Euler's formula for, 270, 275
secant formula for, 283

Combined stresses, 26, 55

fatigue under, 329
tests under, 309

Complementary stresses, 30, 66

Compression tests, 307
Concrete beams, 149

Continuous beams, 239
Core of a section, 266

'

Corrosion fatigue, 331

Creep, 337

Critical load, 268, 270
Critical stress, 275
Critical temperature, 320
Curved bars, 167

Deflection of beams, 197

by area-moment method, 204
by double integration method, 197

by energy method, 246
by superposition method, 211

due to shear, 224
formulas for, 212

under dynamic load, 222

Distortion energy, 317

Ductility, 297

Eccentric loading, of columns, 280

of short struts, 264
Eccentricity ratio, 265, 283

Effective elongation, 304
Efficiency of riveted joints, 66

Elasticity, definition of, 9 .

modulus of, 10

Elastic line, 197

Elements of sections, 358

Endurance limit, 326
Endurance test, 324

Energy of strain, 40, 82, 219

Euler’s column formula, 270, 275

Factor, of safety, 6

of stress concentration, 49

Failure, theories of, 313
Fatigue, 324, 329, 331

Fatigue failures, 331

Flexure, see Bending
Flexural rigidity, 114

Fracture, brittle, 306

cup-cone, 306

Generaliaed force, 247

Gerber’s law, 328

Gkiodman law. 328
Gordon-Rankine column formula, 289

376



376 INDEX

Helical springs, 77

Hinge, plastic, 143

Hooke’s law, 10

for biaxial stress, 57

Hoop tension, 22

Horizontal shear in beams, 125

Horsepower, 73

I-beam sections, elements of, 364

shearing stress in, 130

Impact tests, 320
Imperfections in columns, 285

Inertia, moments of, 346

principal moments of, 354

products of, 351

Joints, riveted, 65

welded, 67

Limit, endurance, 326

proportional, 32, 296

Limit design, 35, 142, 258

Lenders’ lines, 28, 298

Lower yield point, 296

Membrane stresses in shells, 50

Modulus of elasticity, 10

in shear, 63

Modulus of resilience, 41

Mohr^s circle, for strain, 192

for stress, 59, 175

Moments of inertia, 346

polar, 348

principal, 353

table of, 358

Moment-area method, 204

Neutral axis, 112

for plastic bending, 141

Neutral surface, 112

Normal stress, 27, 114

Parabolic column formula, 289

Parallel axis theorem, 350, 352

Physical properties of materials, 341

Plane strain, 189

Plane stress, 173

Plastic analysis, 35, 139, 258

Plastic hinge, 143

Poisson’s raf o, 11, 57

Polar moment of inertia, 348

Pressure vessels, 50

Principal axes, 157, 351, 353

Principal stresses, 175

in bending, 179

in bending and torsion, 183

Product of inertia, 351

Proportional limit, 32, 296

Pure bending, 1 1

1

Pure shear, 62

Radius, of curvature, 114, 197

of gyration, 348, 355
Rankine-Gordon column formula, 289
Reduction of area, 298

Redundant constraints, 232

Reinforced concrete beams, 149

Resilience, modulus of, 41

Rings, stresses in, 22

Riveted joints, 65

Rosette, strain, 194

Safety, factor of, 6

Secant formula, 283

Section modulus, 115, 121

for plastic bending, 142

Shear center, 161

Shear flow, 163

Shear force diagrams, 104

Shear modulus, 63

Shearing stresses, 27

in bending, 127, 163

complementary, 30

Shrink fits, 23

Slenderness ratio, 275

Spring, helical, 77

Spring constant, 80

Statically indeterminate beams, 231

method of superposition, 231

strain energy method, 252

theorem of three moments, 241

Statically indeterminate trusses, 15

Strain, definition of, 9

biaxial, 57

shearing, 63

Strain energy, in bending, 219
in shear, 82
in tension, 40

in torsion, 83

Strain hardening, 32

Strain rosette, 194

Strength theories, 313

Stress, definition of, 3, 5

shearing, 5

working, 5, 33
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Stress coat, 298

Stress concentration, 46, 331

Stress resultant, 3, 96

Stress-strain diagram, 10, 32, 298

Stresses, combined, 26, 55

complementary, 30, 56

principal, 175, 183

Superposition, method of, 211, 231

Tensile test, 294

Tensile test diagram, 295

Tension, axial, 2, 9

Theorem, of Castigliano, 247

of three moments, 241

Theories of failure, 313

maximum distortion energy, 317

maximum shear, 315

maximum strain, 314

maximum stress, 314

Torsion, 70

combined with bending, 183

of a hollow shaft, 74

of a rectangular shaft, 91

of thin-walled tubes, 86
Trajectories, stress, 181

True stress, 304
Twist, see Torsion

Ultimate strength, 32, 295
Upper yield point, 296

Virtual work, 259

Volume change, 11

Warping, 91, 225

Welded joints, 67

Wide flange sections, elements of. 360

Working stress, 5, 33

Yield point, 28, 32, 296, 298










